Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Fact Sheets

Fact Sheets

Marxan User Manual

User manual for Marxan software.

Read More…

Conservation Strategy for Imperiled Aquatic Species in the UTRB

Conservation Strategy for Imperiled Aquatic Species in the UTRB

The Strategy provides guidance to Field Offices in reevaluating current ("status quo") conservation approaches in order to deliver the most cost effective approach toward the conservation and management of imperiled freshwater fish and mussel species in the Upper Tennessee River Basin.

Read More…

Awareness and Outreach

The information and tools from this research is intended to inform planning decisions that can effectively avoid, minimize, or offset impacts from energy development to important natural areas.

Read More…

Awareness and Outreach

The information and tools from this research is intended to inform planning decisions that can effectively avoid, minimize, or offset impacts from energy development to important natural areas.

Read More…

Fact Sheet: Assessing Future Energy Development Managers Guide

Fact Sheet: Assessing Future Energy Development Managers Guide

Provides a general overview of the need for the Energy Assessment research, the major products and findings that came out of the project, and the relevance of the study, models, and tools to the resource management community.

Read More…

AppLCC Winter Newsletter 2015

In this edition we describe how Steering Committee members and invited experts began developing a process for articulating the Appalachian LCC’s priority resources, highlight all the new deliverables from our funding research projects, and more.

Read More…

Shale Gas, Wind and Water: Assessing the Potential Cumulative Impacts of Energy Development on Ecosystem Services within the Marcellus Play

A Nature Conservancy study funded by the Robertson Foundation and published by the open-access Public Library of Science (PLoS) in January 2014, assessed potential impacts of future energy development on water resources in the Marcellus play region.

Read More…

Assessing Future Energy Development across the Appalachian LCC. Final Report

In this study funded by the Appalachian LCC, The Nature Conservancy assessed current and future energy development across the entire region. The research combined multiple layers of data on energy development trends and important natural resource and ecosystem services to give a comprehensive picture of what future energy development could look like in the Appalachians. It also shows where likely energy development areas will intersect with other significant values like intact forests, important streams, and vital ecological services such as drinking water supplies.

Read More…

When It Rains, It Pours Global Warming and the Increase in Extreme Precipitation from 1948 to 2011

Global warming is happening now and its effects are being felt in the United States and around the world. Among the expected consequences of global warming is an increase in the heaviest rain and snow storms, fueled by increased evaporation and the ability of a warmer atmosphere to hold more moisture. An analysis of more than 80 million daily precipitation records from across the contiguous United States reveals that intense rainstorms and snowstorms have already become more frequent and more severe. Extreme downpours are now happening 30 percent more often nationwide than in 1948. In other words, large rain or snowstorms that happened once every 12 months, on average, in the middle of the 20th century now happen every nine months. Moreover, the largest annual storms now produce 10 percent more precipitation, on average.

Read More…

The Wheel of Life Food, Climate, Human Rights, and the Economy

The links between climate change and industrial agriculture create a nexus of crises—food insecurity, natural resource depletion and degradation, as well as human rights violations and inequities. While it is widely recognized that greenhouse gas (GHG) emissions due to human activity are detrimental to the natural environment, it can be difficult to untangle the cascading effects on other sectors. To unravel some of the effects, this paper focuses on three interrelated issues: 1) What are the critical links between climate change and agriculture? 2) How is the nexus of agriculture and climate change affecting human societies particularly regarding food and water, livelihoods, migration, gender equality, and other basic survival and human rights? 3) What is the interplay between economic and finance systems, on the one hand, and food security, climate change, and fundamental human rights, on the other? In the process of drawing connections among these issues, the report will identify the commonality of drivers, or “push” factors, that lead to adverse impacts. A central theme throughout this report is that policies and practices must begin with the ecological imperative in order to ensure authentic security and stability on all fronts including food, water, livelihoods and jobs, climate, energy, and economic. In turn this engenders equity, social justice, and diverse cultures. This imperative, or ethos of nature, is a foundation that serves as a steady guide when reviewing mitigation and adaptation solutions to climate change. Infused within this theme is the sobering recognition that current consumption and production patterns are at odds with goals of reducing GHGs and attaining global food security. For instance, consumption and production levels, based on the global average, are 25 percent higher than the earth’s ecological capacity.1 As societies address the myriad ecological and social issues at the axis of global warming, a central task will be to re-align consumption and production trends in a manner that can fulfill economic and development requirements. This will require a major shift away from present economic growth paradigms based on massive resource extraction and toward creating prosperous and vital societies and economies that preserve the planet’s environmental capacity

Read More…

Financial Costs of Meeting Global Biodiversity Conservation Targets: Current Spending and Unmet Needs

World governments have committed to halting human-induced extinctions and safeguarding important sites for biodiversity by 2020, but the financial costs of meeting these targets are largely unknown. We estimate the cost of reducing the extinction risk of all globally threatened bird species (by ≥1 International Union for Conservation of Nature Red List category) to be U.S. $0.875 to $1.23 billion annually over the next decade, of which 12% is currently funded. Incorporating threatened nonavian species increases this total to U.S. $3.41 to $4.76 billion annually. We estimate that protecting and effectively managing all terrestrial sites of global avian conservation significance (11,731 Important Bird Areas) would cost U.S. $65.1 billion annually. Adding sites for other taxa increases this to U.S. $76.1 billion annually. Meeting these targets will require conservation funding to increase by at least an order of magnitude.

Read More…

The Last Glacial Maximum

We used 5704 14C, 10Be, and 3 He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ~14.5 ka.

Read More…

Phenology Feedbacks on Climate Change

A longer growing season as a result of climate change will in turn affect climate through biogeochemical and biophysical effects. SCIENCE VOL 324

Read More…

Accounting for Environmental Assets

A country can cut down its forests, erode its soils, pollute its aquifers and hunt its wildlife and fisheries to extinction, but its measured income is not affected as these assets disappear. Impoverishment is taken for progress

Read More…

Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge

Freshwater discharge from the continents is a key component of Earth’s water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994–2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km3∕y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km3 ∕y2 , which was largely attributed to an increase of global- ocean evaporation (768 km3 ∕y2 ). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle. climate ∣ global water cycle ∣ hydrology ∣ remote sensing ∣ observations

Read More…

The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

We discuss the existence of cryospheric “tipping points” in the Earth’s climate system. Such critical thresholds have been sug- gested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such thresh- old behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arc- tic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea- ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. Greenland | West Antarctic | climate change | tipping point | Arctic

Read More…

A BURDEN BEYOND BEARING

The climate situation may be even worse than you think. In the first of three features, Richard Monastersky looks at evidence that keeping carbon dioxide beneath dangerous levels is tougher than previously thought.

Read More…

Earth system sensitivity inferred from Pliocene modelling and data

Here we use a coupled atmosphere–ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30–50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system.

Read More…

Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers

The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is difficult because such fires often exercise some degree of influence on their environment and behave erratically, sometimes dangerously. Alternate terms include “blow up” and “fire storm.” Fire managers examining fires over the last 100 years have come to understand many of the factors necessary for EFB development. This work produced guidelines included in current firefighter training, which presents the current methods of predicting EFB by using the crown fire model, which is based on the environmental influences of weather, fuels, and topography. Current training does not include the full extent of scientific understanding. Material in current training programs is also not the most recent scientific knowledge. National Fire Plan funds have sponsored newer research related to wind profiles’ influence on fire behavior, plume growth, crown fires, fire dynamics in live fuels, and conditions associated with vortex development. Of significant concern is that characteristic features of EFB depend on condi- tions undetectable on the ground, relying fundamentally on invisible properties such as wind shear or atmospheric stability. Obviously no one completely understands all the factors contributing to EFB because of gaps in our knowledge. These gaps, as well as the limitations as to when various models or indices apply should be noted to avoid application where they are not appropriate or warranted. This synthesis will serve as a summary of existing extreme fire behavior knowledge for use by fire managers, firefighters, and fire researchers. The objective of this project is to synthesize existing EFB knowledge in a way that connects the weather, fuel, and topographic factors that contribute to development of EFB. This synthesis will focus on the state of the science, but will also consider how that science is currently presented to the fire management community, including incident commanders, fire behavior analysts, incident meteorologists, National Weather Service office forecasters, and firefighters. It will seek to clearly delineate the known, the unknown, and areas of research with the greatest potential impact on firefighter protection.

Read More…

Opposing plant community responses to warming with and without herbivores

If controls over primary productivity and plant community composition are mainly environmental, as opposed to biological, then global change may result in large-scale alterations in ecosystem structure and function. This view appears to be favored among investigations of plant biomass and community responses to experimental and observed warming. In far northern and arctic ecosystems, such studies predict increasing dominance of woody shrubs with future warming and emphasize the carbon (C)-sequestration potential and consequent atmospheric feedback potential of such responses. In contrast to previous studies, we incorporated natural herbivory by muskoxen and caribou into a 5-year experimental investigation of arctic plant community response to warming. In accordance with other studies, warming increased total community biomass by promoting growth of deciduous shrubs (dwarf birch and gray willow). However, mus- koxen and caribou reduced total community biomass response, and responses of birch and willow, to warming by 19%, 46%, and 11%, respectively. Furthermore, under warming alone, the plant community shifted after 5 years away from graminoid-dominated toward dwarf birch-dominated. In contrast, where herbivores grazed, plant community composition on warmed plots did not differ from that on ambient plots after 5 years. These results highlight the potentially important and overlooked influences of vertebrate herbivores on plant community response to warming and emphasize that conservation and management of large herbivores may be an important component of mitigating ecosystem response to climate change. arctic 􏱙 climate change 􏱙 global warming 􏱙 herbivory 􏱙 species interactions

Read More…