Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Resource diversity and landscape-level homogeneity drive native bee foraging

Resource diversity and landscape-level homogeneity drive native bee foraging

Given widespread declines in pollinator communities and increas- ing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previ- ously believed and does not follow a simple optimal foraging strat- egy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Further- more, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Over- all, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services. dispersal | ecosystem services | resource dynamics | spatial ecology | urban

Credits: www.pnas.org/cgi/doi/10.1073/pnas.1208682110 PNAS Early Edition

Fair Use OK

DOWNLOAD FILE — PDF document, 559 kB (573,357 bytes)