Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2

Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2

Southern Ocean acidification via anthropogenic CO2 uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO32􏱉) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO32􏱉 and pH. Our analysis shows an intense wintertime minimum in CO32􏱉 south of the Antarctic Polar Front and when combined with anthropogenic CO2 uptake is likely to induce aragonite undersaturation when atmospheric CO2 levels reach 􏰜450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification. carbon cycle 􏰚 climate change

Credits: PNAS 􏰚 December 2, 2008 􏰚 vol. 105 􏰚 no. 48

Fair Use OK

DOWNLOAD FILE — PDF document, 739 kB (756,953 bytes)