Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / The temperature response of soil microbial efficiency and its feedback to climate

The temperature response of soil microbial efficiency and its feedback to climate

Soils are the largest repository of organic carbon (C) in the terrestrial biosphere and represent an important source of carbon dioxide (CO2)totheatmosphere,releasing60–75PgC an- nually through microbial decomposition of organic materials1,2. A primary control on soil CO2 flux is the efficiency with which the microbial community uses C. Despite its critical importance to soil–atmosphere CO2 exchange, relatively few studies have examined the factors controlling soil microbial efficiency. Here, we measured the temperature response of microbial efficiency in soils amended with substrates varying in lability. We also examined the temperature sensitivity of microbial efficiency in response to chronic soil warming in situ. We find that the efficiency with which soil microorganisms use organic matter is dependent on both temperature and substrate quality, with efficiency declining with increasing temperatures for more recalcitrant substrates. However, the utilization efficiency of a more recalcitrant substrate increased at higher temperatures in soils exposed to almost two decades of warming 5 ◦ C above ambient. Our work suggests that climate warming could alter the decay dynamics of more stable organic matter compounds, thereby having a positive feedback to climate that is attenuated by a shift towards a more efficient microbial community in the longer term.

Credits: NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION |PUBLISHED ONLINE: 20 JANUARY 2013 | DOI: 10.1038/NCLIMATE1796 www.nature.com/natureclimatechange

Fair Use OK

DOWNLOAD FILE — PDF document, 224 kB (229,710 bytes)