Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Subtropical to boreal convergence of tree-leaf temperatures

Subtropical to boreal convergence of tree-leaf temperatures

The oxygen isotope ratio (d18O) of cellulose is thought to provide a record of ambient temperature and relative humidity during per- iods of carbon assimilation1,2. Here we introduce a method to resolve tree-canopy leaf temperature with the use of d18O of cellulose in 39 tree species. We show a remarkably constant leaf temperature of 21.4 6 2.2 6C across 506 of latitude, from subtropical to boreal biomes. This means that when carbon assimilation is maximal, the physiological and morphological properties of tree branches serve to raise leaf temperature above air temperature to a much greater extent in more northern latitudes. A main assumption underlying the use of d18O to reconstruct climate history is that the temperature and relative humidity of an actively photosynthesizing leaf are the same as those of the surrounding air3,4. Our data are contrary to that assumption and show that plant physiological ecology must be considered when reconstructing climate through isotope analysis. Furthermore, our results may explain why climate has only a modest effect on leaf economic traits5 in general.

Credits: Nature Vol 454|24 July 2008|doi:10.1038/nature07031

Fair Use OK

DOWNLOAD FILE — PDF document, 267 kB (273,580 bytes)