Dissecting insect responses to climate warming: overwintering and post-diapause performance in the southern green stink bug, Nezara viridula, under simulated climate-change conditions
The effect of simulated climate change on overwintering and postdiapause
reproductive performance is studied in Nezara viridula (L.) (Heteroptera:
Pentatomidae) close to the species’ northern range limit in Japan. Insects are reared
from October to June under quasi-natural (i.e. ambient outdoor) conditions and in
a transparent incubator, in which climate warming is simulated by adding 2.5 ◦
C to
the ambient temperatures. Despite the earlier assumption that females of N. viridula
overwinter in diapause, whereas males do so in quiescence, regular dissections show
that the two sexes overwinter in a state of true diapause. During winter, both sexes are
dark-coloured and have undeveloped reproductive organs. Resumption of development
does not start until late March. During winter, the effect of simulated warming on the
dynamics and timing of physiological processes appears to be limited. However, the
warming significantly enhances winter survival (from 27–31% to 47–70%), which
is a key factor in range expansion of N. viridula. In spring, the effect of simulated
warming is complex. It advances the post-diapause colour change and transition from
dormancy to reproduction. The earlier resumption of development is more pronounced
in females: in April, significantly more females are already in a reproductive state
under the simulated warming than under quasi-natural conditions. In males, the
tendency is similar, although the difference is not significant. Warming significantly
enhances spring survival and percentage of copulating adults, although not the percentage
of ovipositing females and fecundity. The results suggest that, under the expected
climate-warming conditions, N. viridula will likely benefit mostly as a result of
increased winter and spring survival and advanced post-diapause reproduction. Further
warming is likely to allow more adults to survive the critical cold season and contribute
(both numerically and by increasing heterogeneity) to the post-overwintering population
growth, thus promoting the establishment of this species in newly-colonized
area
Publication Date: 2010
Credits: Physiological Entomology (2010) 35, 343–353 DOI: 10.1111/j.1365-3032.2010.00748.x
Fair Use OK
DOWNLOAD FILE — PDF document, 866 kB (887,706 bytes)