Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / The effect of permafrost thaw on old carbon release and net carbon exchange from tundra

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra

Permafrost soils in boreal and Arctic ecosystems store almost twice as much carbon1,2 as is currently present in the atmosphere3. Permafrost thaw and the microbial decomposition of previously frozen organic carbon is considered one of the most likely positive climate feedbacks from terrestrial ecosystems to the atmosphere in a warmer world1,2,4–7. The rate of carbon release from permafrost soils is highly uncertain, but it is crucial for predicting the strength and timing of this carbon-cycle feedback effect, and thus how important permafrost thaw will be for climate change this century and beyond1,2,4–7. Sustained transfers of carbon to the atmosphere that could cause a significant positive feedback to climate change must come from old carbon, which forms the bulk of the perma- frost carbon pool that accumulated over thousands of years8–11. Here we measure net ecosystem carbon exchange and the radio- carbon age of ecosystem respiration in a tundra landscape under- going permafrost thaw12 to determine the influence of old carbon loss on ecosystem carbon balance. We find that areas that thawed over the past 15 years had 40 per cent more annual losses of old carbon than minimally thawed areas, but had overall net eco- system carbon uptake as increased plant growth offset these losses. In contrast, areas that thawed decades earlier lost even more old carbon, a 78 per cent increase over minimally thawed areas; this old carbon loss contributed to overall net ecosystem carbon release despite increased plant growth. Our data document significant losses of soil carbon with permafrost thaw that, over decadal timescales, overwhelms increased plant carbon uptake13–15 at rates that could make permafrost a large biospheric carbon source in a warmer world.

Credits: Nature Vol 459|28 May 2009|doi:10.1038/nature08031

Fair Use OK

DOWNLOAD FILE — PDF document, 248 kB (254,030 bytes)