Journal Description
Atmosphere
Atmosphere
is an international, peer-reviewed, open access journal of scientific studies related to the atmosphere published monthly online by MDPI. The Italian Aerosol Society (IAS) and Working Group of Air Quality in European Citizen Science Association (ECSA) are affiliated with Atmosphere and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.
- Journal Rank: CiteScore - Q2 (Environmental Science (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.1 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about the Atmosphere.
- Companion journals for Atmosphere include: Meteorology and Aerobiology.
Impact Factor:
2.5 (2023);
5-Year Impact Factor:
2.6 (2023)
Latest Articles
Convection-Permitting Ability in Simulating an Extratropical Cyclone Case over Southeastern South America
Atmosphere 2025, 16(6), 675; https://doi.org/10.3390/atmos16060675 - 2 Jun 2025
Abstract
Between 14 and 16 June 2023, an extratropical cyclone affected the south-southeastern coast of Brazil, causing significant damage and loss of life. In the state of Rio Grande do Sul, Civil Defense authorities reported at least 16 fatalities. Although numerical models can simulate
[...] Read more.
Between 14 and 16 June 2023, an extratropical cyclone affected the south-southeastern coast of Brazil, causing significant damage and loss of life. In the state of Rio Grande do Sul, Civil Defense authorities reported at least 16 fatalities. Although numerical models can simulate the general characteristics of extratropical cyclones, they often struggle to accurately represent the intensity and timing of strong winds and heavy precipitation. One approach to improving such simulations is the use of convective-permitting models (CPMs), in which convection is explicitly resolved. In this context, the main objective of this study is to assess the performance of the Weather Research and Forecasting (WRF) model in CP mode, nested in the ERA5 reanalysis, in representing both the synoptic and mesoscale structures of the cyclone, as well as its associated strong winds and precipitation. The WRF-CP successfully simulated the cyclone’s track, though with some discrepancies in the cyclone location during the first 12 h. Comparisons with radar-based precipitation estimates indicated that the WRF-CP captured the location of the observed precipitation bands. During the cyclone’s occlusion phase—when precipitation was particularly intense—hourly simulated precipitation and 10 m wind (speed, zonal, and meridional components) were evaluated against observations from meteorological stations. WRF-CP demonstrated strong skill in simulating both the timing and intensity of precipitation, with correlation coefficients exceeding 0.4 and biases below 0.5 mm h−1. Some limitations were observed in the simulation of 10 m wind speed, which tended to be overestimated. However, the model performed well in simulating the wind components, particularly the zonal component, as indicated by predominantly high correlation values (most above 0.4), suggesting a good representation of wind direction, which is a function of the zonal and meridional components. Overall, the simulation highlights the potential of WRF-CP for studying extreme weather events, including the small-scale structures embedded within synoptic-scale cyclones responsible for producing adverse weather.
Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
►
Show Figures
Open AccessArticle
Spatiotemporal Variations and Health Assessment of Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Fine Particles (PM1.1) of a Typical Copper-Processing Area, China
by
Weiqian Wang, Jie Ruan and Qingyue Wang
Atmosphere 2025, 16(6), 674; https://doi.org/10.3390/atmos16060674 - 1 Jun 2025
Abstract
This study investigates the concentrations, health risks, and potential sources of heavy metal elements and polycyclic aromatic hydrocarbons (PAHs) in PM1.1 particles in Zhuji, a major copper-processing city in China. The ratios of heavy metals (summer: 0.906; winter: 0.619) and PAHs (>0.750
[...] Read more.
This study investigates the concentrations, health risks, and potential sources of heavy metal elements and polycyclic aromatic hydrocarbons (PAHs) in PM1.1 particles in Zhuji, a major copper-processing city in China. The ratios of heavy metals (summer: 0.906; winter: 0.619) and PAHs (>0.750 in both seasons) in PM1.1/PM2.0 suggest significant accumulation in ultrafine particles. In winter, heavy metal concentrations in PM1.1 reached up to 448 ng/m3, and PAH concentrations were 13.4 ng/m3—over ten times higher than in summer. Health risk assessments revealed that hazard index (HI) values exceeded 1.00 for five age groups (excluding infants) during winter, indicating chronic exposure risks. Incremental lifetime cancer risk (ILCR) values surpassed the upper acceptable limit (1.0 × 10⁻⁴) for four age groups, with Cr, As, Cd, and Pb as major contributors. PAH-related ILCRs were also elevated in winter, with benzo[a]pyrene (BaP) identified as the most potent carcinogen. Enrichment factor (EF) and principal component analysis (PCA) indicated that industrial activities and traffic emissions were the dominant anthropogenic sources of heavy metals. Diagnostic ratio analysis further showed that PAHs mainly originated from vehicle and coal combustion. These findings provide critical insights into pollution patterns in industrial cities and underscore the importance of targeted mitigation strategies.
Full article
(This article belongs to the Section Air Quality and Health)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Ultraviolet Radiation Knowledge and Exposure Practices Among Serbian High School Students: Results of a Nationwide Survey
by
Slavica Malinović-Milićević, Gorica Stanojević, Elena Milićević and Dejan Doljak
Atmosphere 2025, 16(6), 673; https://doi.org/10.3390/atmos16060673 - 1 Jun 2025
Abstract
►▼
Show Figures
The incidence of skin carcinoma has significantly increased among the Serbian population, with mortality rates among the highest in the world. Basic interventions can reduce the effects of ultraviolet radiation (UVR) exposure, especially in youth, and decrease incidence and morbidity. This study is
[...] Read more.
The incidence of skin carcinoma has significantly increased among the Serbian population, with mortality rates among the highest in the world. Basic interventions can reduce the effects of ultraviolet radiation (UVR) exposure, especially in youth, and decrease incidence and morbidity. This study is the first cross-sectional nationwide research on knowledge, attitudes, and sun exposure practices among Serbian high school students. The results revealed that fewer than 5% of students can correctly interpret the sunburn effect of a given UV index, while sun protection strategies are infrequently adopted. Most students (55.97%) expressed favorable attitudes regarding tanning, while more than half (64.48%) reported moderately high and high exposure. Females are more likely than males to expose themselves to UVR, especially intentionally. Females use protection more than males, while even 62.65% of males use protection insufficiently. The most commonly used sun protective measures were sunscreen and shade. The results indicate the necessity for innovative and age-suitable education methods and age- and gender-directed awareness campaigns for skin cancer prevention and the promotion of sun safety. Specifically, campaigns aimed at females should focus on motivating reduced intentional exposure, while those targeting males should emphasize the consistent use of sun protection measures.
Full article

Figure 1

Figure 1
Open AccessArticle
Vegetation Configuration Effects on Microclimate and PM2.5 Concentrations: A Case Study of High-Rise Residential Complexes in Northern China
by
Lina Yang, Xu Li, Daranee Jareemit and Jiying Liu
Atmosphere 2025, 16(6), 672; https://doi.org/10.3390/atmos16060672 - 1 Jun 2025
Abstract
While urban greenery is known to regulate microclimates and reduce air pollution, its integrated effects remain insufficiently quantified. Through field monitoring and ENVI-met 5.1 modeling of high-rise residential areas in Jinan, the results demonstrate that: (1) vegetation exhibits distinct spatial impacts in air-quality
[...] Read more.
While urban greenery is known to regulate microclimates and reduce air pollution, its integrated effects remain insufficiently quantified. Through field monitoring and ENVI-met 5.1 modeling of high-rise residential areas in Jinan, the results demonstrate that: (1) vegetation exhibits distinct spatial impacts in air-quality impacts, reducing roadside PM2.5 by 26.63 μg/m3 while increasing building-adjacent levels by 17.5 μg/m3; (2) shrubs outperformed trees in PM2.5 reduction (up to 65.34%), particularly when planted in inner rows, whereas tree crown morphology and spacing showed negligible effects; (3) densely spaced columnar trees optimize cooling, reducing Ta by 3–4.8 °C and the physiological equivalent temperature (PET*) by 8–12.8 °C, while planting trees on the outer row and shrubs on the inner row best balanced thermal and air-quality improvements; (4) each 1 m2/m3 leaf area density (LAD) increase yields thermal benefits (ΔTa = −1.07 °C, ΔPET* = −1.93 °C) but elevates PM2.5 by 4.32 μg/m3. These findings provide evidence-based vegetation design strategies for sustainable urban planning.
Full article
(This article belongs to the Section Air Quality)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
A Comparison of CALPUFF and LAPMOD Against the Project Sagebrush Datasets
by
Roberto Bellasio, Roberto Bianconi and Paolo Zannetti
Atmosphere 2025, 16(6), 671; https://doi.org/10.3390/atmos16060671 - 1 Jun 2025
Abstract
This paper presents the validation of CALPUFF and LAPMOD against the short-range and high time resolution tracer study dataset of Project Sagebrush (PSB). The meteorological fields for both models are prepared with the CALMET diagnostic model starting from the exhaustive meteorological data collected
[...] Read more.
This paper presents the validation of CALPUFF and LAPMOD against the short-range and high time resolution tracer study dataset of Project Sagebrush (PSB). The meteorological fields for both models are prepared with the CALMET diagnostic model starting from the exhaustive meteorological data collected during PSB. The PSB releases were undertaken under different meteorological and turbulence conditions. The validation results—judged by means of several statistical parameters—indicate that the models are generally in satisfactory agreement with the observations, sometimes even when time- and space-paired data are considered. However, in four simulations carried out under low wind and very stable conditions, the model performances are poor. This may be due to the inability of CALMET to reproduce the vertical wind direction variations in a shallow layer close to the ground, but also to inappropriate turbulence dispersion algorithms in the dispersion models. This issue will be further investigated in future work.
Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Spatio-Temporal Patterns of Methane Emissions from 2019 Onwards: A Satellite-Based Comparison of High- and Low-Emission Regions
by
Elżbieta Wójcik-Gront, Agnieszka Wnuk and Dariusz Gozdowski
Atmosphere 2025, 16(6), 670; https://doi.org/10.3390/atmos16060670 - 1 Jun 2025
Abstract
Methane (CH4) is a potent greenhouse gas with a significant impact on short- and medium-term climate forcing, and its atmospheric concentration has been increasing rapidly in recent decades. This study aims to analyze spatio-temporal patterns of atmospheric methane concentrations between 2019
[...] Read more.
Methane (CH4) is a potent greenhouse gas with a significant impact on short- and medium-term climate forcing, and its atmospheric concentration has been increasing rapidly in recent decades. This study aims to analyze spatio-temporal patterns of atmospheric methane concentrations between 2019 and 2025, focusing on comparisons between regions characterized by high and low emission intensities. Level-3 XCH4 data from the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite were used, which were aggregated into seasonal and annual composites. High-emission regions, such as the Mekong Delta, Nile Delta, Eastern Uttar Pradesh and Bihar, Central Thailand, Lake Victoria Basin, and Eastern Arkansas, were contrasted with low-emission areas including Patagonia, the Mongolian Steppe, Northern Scandinavia, the Australian Outback, the Sahara Desert, and the Canadian Shield. The results show that high-emission regions exhibit substantially higher seasonal amplitude in XCH4 concentrations, with an average seasonal variation of approximately 30.00 ppb, compared to 17.39 ppb in low-emission regions. Methane concentrations generally peaked at the end of the year (Q4) and reached their lowest levels during the first half of the year (Q1 or Q2), particularly in agriculturally dominated regions. Principal component and cluster analyses further confirmed a strong spatial differentiation between high- and low-emission regions based on both temporal trends and seasonal behavior. These findings demonstrate the potential of satellite remote sensing to monitor regional methane dynamics and highlight the need for targeted mitigation strategies in major agricultural and wetland zones.
Full article
(This article belongs to the Section Air Quality)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Ensemble Learning-Based Soft Computing Approach for Future Precipitation Analysis
by
Shiu-Shin Lin, Kai-Yang Zhu, Chen-Yu Wang, Chou-Ping Yang and Ming-Yi Liu
Atmosphere 2025, 16(6), 669; https://doi.org/10.3390/atmos16060669 - 1 Jun 2025
Abstract
This study integrated the strengths of ensemble learning and soft computing to develop a future regional rainfall model for evaluating the complex characteristics of island precipitation. Soft computing uses the well-developed adaptive neuro-fuzzy inference system, which has been successfully applied in atmospheric hydrology
[...] Read more.
This study integrated the strengths of ensemble learning and soft computing to develop a future regional rainfall model for evaluating the complex characteristics of island precipitation. Soft computing uses the well-developed adaptive neuro-fuzzy inference system, which has been successfully applied in atmospheric hydrology and combines the features of neural networks and fuzzy logic. This combination enables artificial intelligence (AI) to effectively represent reasoning derived from complex data and expert experience. Due to the multiple atmospheric and hydrological factors that influence rainfall, the nonlinear interrelations among them are highly intricate. Nonlinear principal component analysis can extract nonlinear features from the data, reduce dimensionality, and minimize the adverse effects of data noise and excessive input factors on soft computing, which may otherwise result in poor model performance. Ultimately, ensemble learning enhances prediction accuracy and reduces uncertainty. This study used Tamsui and Kaohsiung in Taiwan as case study locations. Historical monthly rainfall data (January 1950 to December 2005) from Tamsui Station and Kaohsiung Station of the Central Weather Administration, along with historical and varied emission scenario data (RCP 4.5 and RCP 8.5) from three AR5 GCM models (ACCESS 1.0, CSIRO-MK3.6.0, MRI-CGCM3), were used to evaluate future regional rainfall trends and uncertainties through the method proposed in this study. The research findings indicate the following: (1) Ensemble learning results demonstrate that all examined general circulation models effectively simulate historical rainfall trends. (2) The average rainfall trends under the RCP 4.5 emission scenario are generally consistent with historical rainfall trends. (3) The exceedance probabilities of future rainfall during the mid-term (2061–2080) and long-term (2081–2100) suggest that Kaohsiung may experience precipitation events with higher rainfall than historical data during dry seasons (October to April of next year), while Tamsui Station may exhibit greater variability in terms of exceedance probabilities. (4) Under both the RCP 4.5 and RCP 8.5 emission scenarios, the percentage changes in future rainfall variability at Kaohsiung Station during dry seasons are higher than those during wet seasons (May to September), indicating an increased risk of extreme precipitation events during dry seasons.
Full article
(This article belongs to the Special Issue The Hydrologic Cycle in a Changing Climate (2nd Edition))
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Reconstructing and Projecting 2012-like Drought in Serbia Using the Max Planck Institute Grand Ensemble
by
Milica Tošić, Ivana Tošić, Irida Lazić and Vladimir Djurdjević
Atmosphere 2025, 16(6), 668; https://doi.org/10.3390/atmos16060668 - 1 Jun 2025
Abstract
Droughts are among the most impactful climate extremes in Serbia, with significant socio-economic consequences, particularly in agriculture. The summer of 2012 was one of the most extreme drought events in Serbia’s history, characterized by record-breaking temperatures and prolonged precipitation deficits. In this study,
[...] Read more.
Droughts are among the most impactful climate extremes in Serbia, with significant socio-economic consequences, particularly in agriculture. The summer of 2012 was one of the most extreme drought events in Serbia’s history, characterized by record-breaking temperatures and prolonged precipitation deficits. In this study, we investigate the meteorological aspects of the 2012 drought, its progression, and its potential recurrence under future climate conditions. Using the high-resolution gridded observational dataset (EOBS) and Single-Model Initial-Condition Large Ensemble (SMILE) simulations from CMIP6—the Max Planck Institute Earth System Model version 1.2 (MPI-ESM 1.2) Grand Ensemble, we analyze precipitation deficits and assess the ability of MPI-GE CMIP6 to reproduce the observed event. We identify analogue events in MPI-GE CMIP6 that resemble the 2012 drought and examine their occurrence across historical and future climate scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Our results indicate that MPI-GE CMIP6 effectively captures precipitation deficit extremes and that events comparable to the 2012 drought become more frequent and severe under higher greenhouse gas concentration scenarios. This study underscores the importance of a large ensemble in understanding the full distribution of extreme drought events and provides Serbia-specific insights, which is valuable for regional climate adaptation planning.
Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Observations, Modeling, and Impacts (2nd Edition))
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Testing the Performance of Large-Scale Atmospheric Indices in Estimating Precipitation in the Danube Basin
by
Constantin Mares, Venera Dobrica, Ileana Mares and Crisan Demetrescu
Atmosphere 2025, 16(6), 667; https://doi.org/10.3390/atmos16060667 - 1 Jun 2025
Abstract
The objective of this study was to analyse the influence of two large-scale climate indices on precipitation in the Danube basin, both separately and in combination. The evolution of the hydroclimatic regime in this area is of particular importance but has received limited
[...] Read more.
The objective of this study was to analyse the influence of two large-scale climate indices on precipitation in the Danube basin, both separately and in combination. The evolution of the hydroclimatic regime in this area is of particular importance but has received limited attention. One of the indices for these data is the well-known the North Atlantic Oscillation (NAOI) climate index, which has been used in numerous investigations; the aim of using this index is to determine its influence on various hydroclimatic variables in many regions of the globe. The other index, the Greenland–Balkan Oscillation index (GBOI), has been demonstrated to have a greater influence on various hydroclimatic variables in Southeastern Europe compared to the NAOI. First, through different bivariate methods, such as estimating wavelet total coherence (WTC) in the time–frequency domain and applying partial wavelet coherence (PWC), the performance of the GBOI contributing to precipitation in the Danube basin was compared with that of the NAOI in the winter season. Then, by using relatively simple multivariate methods such as multiple linear regression (MLR) and a variant thereof called ridge regression (RR), notable results were obtained regarding the prediction of overall precipitation in the Danube basin in the winter season. The training period was 90 years (1901–1990), and the testing period was 30 years (1991–2020). The used Nash–Sutcliffe (NS) performance criterion varied between 0.65 and 0.94, depending on the preprocessing approach applied for the input data, proving that statistical modelling for the winter season is both simple and powerful compared to modern deep learning methods.
Full article
(This article belongs to the Section Climatology)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Summer Thermal Comfort in Urban Squares: The Case of Human Tower Exhibitions in Catalonia
by
Òscar Saladié, Anna Boqué-Ciurana, Júlia Sevil and Jon Xavier Olano Pozo
Atmosphere 2025, 16(6), 666; https://doi.org/10.3390/atmos16060666 - 1 Jun 2025
Abstract
Global warming and the increasing frequency and intensity of heat waves are resulting in more frequent unfavourable weather conditions for outdoor activities, especially during the summer. The building environment can alter weather conditions, resulting in higher temperatures (urban heat island). Human towers are
[...] Read more.
Global warming and the increasing frequency and intensity of heat waves are resulting in more frequent unfavourable weather conditions for outdoor activities, especially during the summer. The building environment can alter weather conditions, resulting in higher temperatures (urban heat island). Human towers are cultural activities that typically take place outdoors and were declared a UNESCO Intangible Cultural Heritage in 2010. The objectives of this study are (i) to analyse the weather conditions (i.e., temperature and relative humidity) during the human tower exhibitions, (ii) to determine discomfort during the exhibitions based on the heat index (HI) resulting from the combination of temperature and humidity, and (iii) to compare records from the square with those recorded in the nearest automatic meteorological station (AMS) belonging to the Catalan Meteorological Service network. To determine the weather conditions in the squares during the human tower exhibitions, a pair of sensors recorded temperature and relative humidity data in six exhibitions performed in the summer of 2024. The temperature exceeded 30 °C in five of the six human tower exhibitions analysed. In the cases of the Santa Anna exhibition (El Vendrell) and the Sant Fèlix exhibition (Vilafranca del Penedès), one of the sensors recorded temperatures above 30 °C throughout the entire duration of the exhibition. There was a predominance of HI values falling within the caution threshold in the two sensors of three exhibitions and within the extreme caution threshold in the two sensors of the other three exhibitions. The temperature is higher in urban squares than in the surrounding rural areas. The key factor is the urban heat island phenomenon, which poses health risks to both human tower builders and attendees. Adaptation measures are therefore necessary to guarantee the safety of the participants.
Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Simulating Near-Surface Winds in Europe with the WRF Model: Assessing Parameterization Sensitivity Under Extreme Wind Conditions
by
Minkyu Lee, Donggun Oh, Jin-Young Kim and Chang Ki Kim
Atmosphere 2025, 16(6), 665; https://doi.org/10.3390/atmos16060665 - 31 May 2025
Abstract
Accurately simulating near-surface wind speeds is indispensable for wind energy development, particularly under extreme weather conditions. This study utilizes the Weather Research and Forecasting (WRF) model with a 6 km resolution to evaluate 80 m wind speed simulations over Europe, using the ECMWF
[...] Read more.
Accurately simulating near-surface wind speeds is indispensable for wind energy development, particularly under extreme weather conditions. This study utilizes the Weather Research and Forecasting (WRF) model with a 6 km resolution to evaluate 80 m wind speed simulations over Europe, using the ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis version 5 (ERA5) as initial and lateral boundary conditions. Two cases were analyzed: a normal case with relatively weak winds, and an extreme case with intense cyclonic activity over 7 days, focusing on offshore wind farm regions and validated against Forschungsplattformen in Nord- und Ostsee (FINO) observational data. Sensitivity experiments were conducted by modifying key physical parameterizations associated with wind simulation to assess their impact on accuracy. Results reveal that while the model realistically captured temporal wind speed variations, errors were significantly amplified in extreme cases, with overestimation in weak wind regimes and underestimation in strong winds (approximately 1–3 m/s). The Asymmetrical Convective Model 2 (ACM2) planetary boundary layer (PBL) scheme demonstrated superior performance in extreme cases, while there were no significant differences among experiments under normal cases. These findings emphasize the critical role of physical parameterizations and the need for improved modeling approaches under extreme wind conditions. This research contributes to developing reliable wind speed simulations, supporting the operational stability of wind energy systems.
Full article
(This article belongs to the Section Meteorology)
Open AccessArticle
Projections of Extreme Precipitation Changes over the Eastern Tibetan Plateau: Exploring Thermodynamic and Dynamic Contributions
by
Xiaojiang Liu, Xi Liu, Chengxin Li, Xiaomin Ma, Kena Chen, Zhenhong Sun, Kangning Wang, Quanliang Chen and Hongke Cai
Atmosphere 2025, 16(6), 664; https://doi.org/10.3390/atmos16060664 - 31 May 2025
Abstract
The Eastern Tibetan Plateau (ETP), characterized by its intricate topography and pronounced altitudinal gradient, presents significant challenges for climate model simulations. This study assesses precipitation over the ETP using high-resolution (HR) and low-resolution (LR) models from CMIP6 HighResMIP. Both HR and LR models
[...] Read more.
The Eastern Tibetan Plateau (ETP), characterized by its intricate topography and pronounced altitudinal gradient, presents significant challenges for climate model simulations. This study assesses precipitation over the ETP using high-resolution (HR) and low-resolution (LR) models from CMIP6 HighResMIP. Both HR and LR models successfully reproduce the spatial distribution of annual precipitation, capturing the northwest-to-southeast increasing gradient. However, HR models significantly outperform LR models, reducing the annual mean precipitation bias from 1.09 mm/day to 1.00 mm/day (9% reduction, p < 0.05, two-tailed Student’s t-test) and decreasing RMSE by 12% (p < 0.05) in the ETP for the 1985–2014 period. Furthermore, HR models exhibit superior skill in simulating extreme precipitation events, particularly over the Sichuan Basin. For the 1985–2014 period, HR models show markedly smaller biases in representing extreme precipitation and accurately reflect observed trends. Projections for the future suggest a pronounced intensification of extreme precipitation events across the region. Process-based scaling diagnostics attribute these changes predominantly to dynamical components, which account for approximately 85% of the total scaling change in HR models and 89% in LR models. These findings underscore the pivotal role of dynamical processes in shaping extreme precipitation and highlight the advantages of HR models in enhancing simulation fidelity. This study provides critical insights into climate model performance, offering robust information to inform climate mitigation and adaptation strategies tailored for the ETP.
Full article
(This article belongs to the Section Meteorology)
Open AccessArticle
An EG-Tree Model Incorporating Spatial Heterogeneity for Analyzing Multifactorial Coupling Effects on Carbon Emissions Across Industries and Regions in China
by
Jinrui Zang, Xin Hu, Kun Qie, Zian Zhang and Shi Zhang
Atmosphere 2025, 16(6), 663; https://doi.org/10.3390/atmos16060663 - 31 May 2025
Abstract
With the proposal of the dual carbon goals, it is of great significance to identify the causes of carbon emissions and reduce carbon emissions directly. There is a lack of analysis on the causes of carbon emissions considering the coupling effect of multiple
[...] Read more.
With the proposal of the dual carbon goals, it is of great significance to identify the causes of carbon emissions and reduce carbon emissions directly. There is a lack of analysis on the causes of carbon emissions considering the coupling effect of multiple factors and regional heterogeneity. The causes of carbon emissions are examined from multiple perspectives utilizing the panel data spanning from 1997 to 2022, encompassing 30 provinces in China. To further analyze the causes of carbon emissions, an enhanced feature and regularized gradient boosting tree (EG-Tree) model is constructed, and a scoring method for the tree structure is proposed. The coupling effect of multiple factors are analyzed such as coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, natural gas, etc., on the carbon emission intensity of various industries and their regional heterogeneity. The results show that: (1) The EG-Tree model constructed in this study could accurately analyze the causes of carbon emissions under the coupling of multiple factors based on the cumulative iterative feature branching contribution values (impact factors), with an average model fitting precision of 0.30. This means the carbon emission intensity values were predicted by various industries in different regions based on different energy consumption levels and industry-specific carbon emissions, compared with the carbon emission intensity values calculated using the carbon emission measurement dataset. (2) The consumption of coal and coke has a significant impact on the average carbon emission factors of various industries, with values of 7139.95 and 7217.05, respectively. The consumption of natural gas and liquefied petroleum gas has a smaller impact on the average carbon emission intensity of various industries under the EG-Tree model with corresponding carbon emission intensity impact factors of 5057.90 and 2789.57, respectively. (3) The Northeast region is a low-carbon area, while the East region is a high-carbon area, with total carbon emissions of 2,238,646.60 million tons and 5,566,314.00 million tons of CO2, respectively. The Northeast region has the lowest pollution intensity for heating and cooling, with carbon emissions of 155,661.73 million tons of CO2; the industrial carbon emissions in the East region are relatively high at 1,623,835.62 million tons of CO2. The research findings of this study are beneficial for relevant departments to focus on the main impact factors of carbon emissions in different regions and industries, and to develop targeted emission reduction policies.
Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Long-Term Caragana korshinskii Restoration Enhances SOC Stability but Reduces Sequestration Efficiency over 40 Years in Degraded Loess Soils
by
Zhijing Xue, Shuangying Wang, Anqi Wang, Shengwei Huang, Tingting Qu, Qin Chen, Xiaoyun Li, Rui Wang, Zhengyao Liu and Zhibao Dong
Atmosphere 2025, 16(6), 662; https://doi.org/10.3390/atmos16060662 - 31 May 2025
Abstract
Caragana korshinskii, a key species in China’s Grain for Green Project on the Loess Plateau, is effective in enhancing soil C sequestration. However, whether its contribution to SOC (soil organic carbon) stability persists over multi-decadal restoration chronosequences remains unclear. Using the time–space
[...] Read more.
Caragana korshinskii, a key species in China’s Grain for Green Project on the Loess Plateau, is effective in enhancing soil C sequestration. However, whether its contribution to SOC (soil organic carbon) stability persists over multi-decadal restoration chronosequences remains unclear. Using the time–space substitution method, we investigated the SOC fractions (POC, particulate organic C, and MAOC, mineral-associated organic C) dynamics across soil depths (0–10, 10–30, and 30–60 cm) in a 40-year chronosequence of C. korshinskii restoration, which is located in a comprehensive managed watershed on the Loess Plateau, China. The results showed that the C. korshinskii restoration chronosequence improved soil C sequestration at different scales compared to abandoned sites. In the middle phase (10–30 years), the concentration of SOC peaked at 35.88 g/kg, exceeding natural grassland (32.33 g/kg). Above- and belowground biomass accumulation drove SOC enhancement. POC as transient C inputs, and MAOC through mineral interactions, reach a peak at 7.98 g/kg which shows the greatest increase (276.81%). In the subsequent phase (after 30 years), MAOC dominated SOC stabilization, yet SOC fractions declined overall. MAOC contribution to SOC stability plateaued at 20–30%, constrained by soil desiccation from prolonged root water uptake. C. korshinskii provides the optimal SOC benefits within 10–30 years of restoration, highlighting a trade-off between vegetation-driven C inputs and hydrological limits in arid ecosystems. Beyond 30 years, C. korshinskii’s high water demand reduced SOC sequestration efficiency, risking the reversal of carbon gains despite initial MAOC advantages.
Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
RANS and LES Simulations of Localized Pollutant Dispersion Around High-Rise Buildings Under Varying Temperature Stratifications
by
Jinrong Zhao, Dongpeng Guo, Zhehai Zhang, Jiayi Guo, Yunpeng Li, Junfang Zhang and Xiaofan Wang
Atmosphere 2025, 16(6), 661; https://doi.org/10.3390/atmos16060661 - 31 May 2025
Abstract
This research investigates the influence of buildings on the flow pattern and pollutant spread under different temperature stratification scenarios. Using Reynolds-averaged Navier–Stokes (RANS) equations alongside the large eddy simulation (LES) model, the findings were validated through comparisons with wind tunnel experiments. Results indicate
[...] Read more.
This research investigates the influence of buildings on the flow pattern and pollutant spread under different temperature stratification scenarios. Using Reynolds-averaged Navier–Stokes (RANS) equations alongside the large eddy simulation (LES) model, the findings were validated through comparisons with wind tunnel experiments. Results indicate that the return zone length on the leeward side of the building is the longest, around 1.75 times the building height (H) when the Richardson number (Rib) is 0.08. This return zone length reduces to approximately 1.4 H when Rib is 0.0 and further decreases to 1.25 H with a Rib of −0.1. Pollutant dispersion is similarly affected by the flow field, which aligns with these trends. The studied models revealed that LES proved the most accurate, closely matching wind tunnel results across all temperature stratification levels, while RANS overestimated values at building height (z/H = 1.0) and around the building (x/H < 0.625). To balance computational efficiency with prediction accuracy, a hybrid method integrating LES and RANS is recommended.
Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
►▼
Show Figures

Figure 1

Figure 1
Open AccessCommunication
A Meteorological Analysis of the Missed Approach of an Aircraft at Taoyuan International Airport, Taiwan, During Typhoon Kong-Rey in 2024—The Impact of Crosswind and Turbulence
by
Pak Wai Chan, Yan Yu Leung and Kai Kwong Lai
Atmosphere 2025, 16(6), 660; https://doi.org/10.3390/atmos16060660 - 30 May 2025
Abstract
When Typhoon Kong-rey hit Taiwan in October 2024, an aircraft attempting to land at Taoyuan International Airport undertook a missed approach and landed successfully on the second attempt. The possible meteorological factors causing this missed approach are studied in this study based on
[...] Read more.
When Typhoon Kong-rey hit Taiwan in October 2024, an aircraft attempting to land at Taoyuan International Airport undertook a missed approach and landed successfully on the second attempt. The possible meteorological factors causing this missed approach are studied in this study based on a methodology specifically adopted for Hong Kong International Airport; namely, studying crosswind as derived from aircraft and airport meteorological observations, as well as the low-level turbulence derived from data on the aircraft’s vertical acceleration and high-resolution numerical weather prediction model results. A significant crosswind component and a gusting crosswind are the major reasons for the missed approach. The low-level turbulence appears to have been secondary/minor, as shown by the successful landings of aircraft before and after the event. It is concluded that the methodology supporting airport operations in Hong Kong may be used to explain missed approach cases at other airports under the influence of tropical cyclones.
Full article
(This article belongs to the Special Issue Advance in Transportation Meteorology (3rd Edition))
Open AccessArticle
Molecular Characterization of Organic Aerosol in Summer Suburban Shanghai Under High Humidity
by
Xiancheng Tang, Junfang Mao, Dongmei Cai, Zhiwei Zhang, Haixin Nong, Ling Li and Jianmin Chen
Atmosphere 2025, 16(6), 659; https://doi.org/10.3390/atmos16060659 - 30 May 2025
Abstract
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal
[...] Read more.
In this study, the chemical compositions of PM2.5 (particulate matter < 2.5 μm) and the molecular compositions of methanol-soluble organic carbon (MSOC) in suburban Shanghai during summer were measured to investigate the molecular characteristics of organic aerosol (OA) under high humidity. Diurnal variation analysis reveals the influence of relative humidity (RH) on secondary organic aerosol (SOA) components. Organosulfates (OSs), particularly nitrooxy-OSs, exhibit a positive correlation with increasing humidity rather than atmospheric oxidants in this high-humidity site. This suggests that high RH can promote the formation of OSs, possibly through enhancing particle surface area and volume, and creating a favorable environment for aqueous-phase or heterogeneous reactions in the particle phase. A considerable proportion of CHOS compounds may be derived from anthropogenic aliphatic hydrocarbon derivatives. These compounds exhibit slightly elevated daytime concentrations due to increased emissions of long-chain aliphatics from sources such as diesel combustion, as well as photochemically enhanced oxidation to OSs. In contrast, CHONS compounds increased at night, driven by high-humidity liquid-phase oxidation. Terpenoid derivatives accounted for 13.4% of MSOC and contributed over 40% to nighttime CHONS. These findings highlight humidity’s important role in driving daytime and nighttime processing of anthropogenic and biogenic precursors to form SOA, even under low SO2 and NOx conditions.
Full article
(This article belongs to the Section Aerosols)
►▼
Show Figures

Figure 1

Figure 1
Open AccessArticle
Synergistic Impact of Midlatitude Westerly and East Asian Summer Monsoon on Mid-Summer Precipitation in North China
by
Ke Shang, Xiaodong Liu, Xiaoning Xie, Yingying Sha, Xuan Zhao, Jiahuimin Liu and Anqi Wang
Atmosphere 2025, 16(6), 658; https://doi.org/10.3390/atmos16060658 - 29 May 2025
Abstract
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study,
[...] Read more.
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study, the concurrent variations of mid-summer westerly and EASM are categorized into two configurations: strong westerly–strong EASM (SS) and weak westerly–weak EASM (WW). At the synoptic timescale, the SS configuration significantly enhances precipitation in NC, whereas the WW configuration suppresses mid-summer rainfall. The underlying mechanism is that the SS pattern stimulates an anomalous quasi-barotropic cyclone–anticyclone pair over the Mongolian Plateau–Yellow Sea region. Two anomalous water vapor channels (westerly-driven and EASM-driven water vapor transport) are established in the southern and western peripheries of this cyclone–anticyclone pair, ensuring abundant moisture supply over NC. Meanwhile, frequently occurring westerly jet cores in northern NC form a jet entrance region, favoring strong upper-level divergent pumping and deep accents in its southern flank. This synergy between strong westerlies and EASM enhances both the moisture transports and ascending movements, thereby increasing precipitation over NC. Conversely, the atmospheric circulation associated with the WW pattern exhibits opposite characteristics, resulting in decreased NC rainfall. Our findings elucidate the synoptic-scale influences of westerly–monsoon synergy on mid-summer rainfall, through regulating moisture transports and westerly jet-induced dynamic uplift, potentially improving predictive capabilities for mid-summer precipitation forecasting.
Full article
(This article belongs to the Section Meteorology)
Open AccessArticle
The Effects of Nonplanar Cloud Top on Lightning Optical Observations from Space-Based Instruments
by
Bingzhe Dai, Qilin Zhang and Xingke Pan
Atmosphere 2025, 16(6), 657; https://doi.org/10.3390/atmos16060657 - 29 May 2025
Abstract
Satellite optical observations of lightning are influenced by a variety of factors. Studying these factors can provide valuable reference information for applications such as lightning parameter inversion. However, due to the variability of natural factors and the high cost of field observations, research
[...] Read more.
Satellite optical observations of lightning are influenced by a variety of factors. Studying these factors can provide valuable reference information for applications such as lightning parameter inversion. However, due to the variability of natural factors and the high cost of field observations, research requiring controlled variables often relies heavily on effective simulation models. To this end, we applied our developed optical transmission model for lightning, which can simultaneously account for the spatiotemporal characteristics of lightning sources and observation angles, as well as inhomogeneous and irregular cloud environments, to analyze an unexplained hypothesis from previous studies—that non-planar cloud tops may also be an influencing factor. Our analysis confirms that non-planar cloud tops are indeed an important factor that must be considered, especially under smaller or larger observation angles. In the simulation results, undulations caused an energy increase of up to 43.19% at a 0° observation angle, while at a 60° observation angle, the undulations resulted in an additional attenuation of approximately 17.5%.
Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Open AccessArticle
Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing
by
Yu Qu, Juan Yang, Xingang Liu, Yong Chen, Haiyan Ran, Junling An and Fanyeqi Yang
Atmosphere 2025, 16(6), 656; https://doi.org/10.3390/atmos16060656 - 29 May 2025
Abstract
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results
[...] Read more.
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results showed that five trace elements (Mn, Cu, As, Zn and Pb) had high enrichment in PM10 and were closely related with anthropogenic combustion and vehicle emissions; organic and element carbon had a high correlation due to the same primary sources and similar evolution; nitrate dominated SNA (sulfate, nitrate, ammonium) and nitrate/sulfate ratios reached 2.35 on the polluted days owing to the significant contribution of motor vehicle emissions. Positive matrix factorization analysis indicated that secondary source, traffic, biomass burning, industry, coal combustion and crustal dust were the main sources of PM10, contributing 32.5%, 20.9%, 15.0%, 13.9%, 9.4% and 8.3%, respectively; backward trajectories and potential source contribution function analysis showed that short-distance airflow was the dominant cluster and accounted for nearly 50% of total trajectories. The Weather Research and Forecasting model with Chemistry, with integrated process rate analysis, showed that dominant gas-phase reactions (heterogeneous reaction) during daytime (nighttime) in presence of ammonia led to a significant enhancement of nitrate in Zhuozhou, contributing 12.6 μg/m3 in episode 1 and 22.9 μg/m3 in episode 2.
Full article
(This article belongs to the Section Aerosols)
►▼
Show Figures

Figure 1

Figure 1

Journal Menu
► ▼ Journal Menu-
- Atmosphere Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Buildings, Forests, Land, Remote Sensing, Smart Cities, Sustainability, Atmosphere
Climate Change and Environmental Sustainability, 4th Edition
Topic Editors: Baojie He, Ali Cheshmehzangi, Shady Attia, Zhengxuan LiuDeadline: 1 July 2025
Topic in
Atmosphere, Earth, Encyclopedia, Entropy, Fractal Fract, MAKE, Meteorology
Revisiting Butterfly Effect, Multiscale Dynamics, and Predictability Using Ai-Enhanced Modeling Framework (AEMF) and Chaos Theory
Topic Editors: Bo-Wen Shen, Roger A. Pielke Sr., Xubin ZengDeadline: 31 July 2025
Topic in
Agriculture, Atmosphere, Sustainability, Land, Environments, Agronomy, Energies
Greenhouse Gas Emission Reductions and Carbon Sequestration in Agriculture
Topic Editors: Dimitrios Aidonis, Dionysis Bochtis, Charisios AchillasDeadline: 31 August 2025
Topic in
Atmosphere, Energies, Sustainability, Toxics, Applied Sciences, Applied Biosciences
Biomass Use and its Health and Environmental Effects
Topic Editors: Wei Du, Zhaofeng Chang, Yuanchen ChenDeadline: 30 September 2025

Conferences
Special Issues
Special Issue in
Atmosphere
Observations and Modeling of Precipitation Extremes and Tropical Cyclones (2nd Edition)
Guest Editors: Muhammad Jehanzaib, Shoaib AliDeadline: 6 June 2025
Special Issue in
Atmosphere
Applying Deep Learning Technology for Spatiotemporal Prediction of Air Pollution from Urban Mobile Sources
Guest Editors: Zhenyi Xu, Changfa TaoDeadline: 9 June 2025
Special Issue in
Atmosphere
Advanced Research on Anthropogenic Pollutant Emission Inventory
Guest Editors: Xiaojia Chen, Yinchang FengDeadline: 9 June 2025
Special Issue in
Atmosphere
Development in Carbonaceous Aerosols
Guest Editor: Mao MaoDeadline: 10 June 2025
Topical Collections
Topical Collection in
Atmosphere
Indoor Air Quality: From Sampling to Risk Assessment in the Light of New Legislations
Collection Editors: Pasquale Avino, Gaetano Settimo
Topical Collection in
Atmosphere
Livestock Odor Issues and Air Quality
Collection Editor: Jacek Koziel
Topical Collection in
Atmosphere
Measurement of Exposure to Air Pollution
Collection Editor: Luca Stabile