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ABSTRACT

Background. The southeastern United States (‘Southeast’) experiences high levels of fire activity,
but the preponderance of small and prescribed fires means that existing burn severity products
are incomplete across the region. Aims. We developed and applied a burn severity model across
the Southeast to enhance our understanding of regional burn severity patterns. Methods. We
used Composite Burn Index (CBI) plot data from across the conterminous US (CONUS) to train a
gradient-boosted decision tree model. The model was optimised for the Southeast and applied
to the annual Landsat Burned Area product for 2000-2022 across the region. Key results. The
burn severity model had a root mean square error (RMSE) of 0.48 (R* = 0.70) and 0.50 (R* = 0.37)
for the CONUS and Southeast, respectively. The Southeast, relative to CONUS, had lower mean
absolute residuals in low and moderate burn severity categories. Burn severity was consistently
lower in areas affected by prescribed burns relative to wildfires. Conclusions. Although regional
performance was limited by a lack of high burn severity CBI plots, the burn severity dataset
demonstrated patterns consistent with low-severity, frequent fire regimes characteristic of
Southeastern ecosystems. Implications. More complete data on burn severity will enhance
regional management of fire-dependent ecosystems and improve estimates of fuels and fire
emissions.

Keywords: burn severity, burned area, Composite Burn Index, CBI, differenced Normalized Burn
Ratio, dNBR, Landsat, longleaf pine, Monitoring Trends in Burn Severity, MTBS, post-fire,

prescribed fire, Southeast US, wildfire, wildland fire.

Introduction

Wildland fires, both prescribed burns and wildfires, alter ecosystem conditions and
processes (Bowman et al. 2009; Franklin et al. 2016), with the amount of change
reflected by burn severity (Meng and Zhao 2017). Satellite imagery has been widely
used to develop operational burned area products (Randerson et al. 2017; van der Werf
et al. 2017; Humber et al. 2018; Hawbaker et al. 2020a) and to monitor burn severity
(Meng and Zhao 2017; Miller et al. 2023). Within the United States, the southeastern US
(‘Southeast’) experiences the largest number of wildland fire ignitions (Randerson et al.
2017; Short 2022), the greatest occurrence of wildfire in the wildland-urban interface
(WUI) (Thomas and Butry 2014; Radeloff et al. 2023) and the most active application of
prescribed fire (Nowell et al. 2018; Kolden 2019; Melvin 2020). However, the great
majority of fires are small, and most are prescribed, making them challenging to detect
remotely owing to their limited extent and relatively low severity. Therefore, efforts to
track regional burned areas and burn severity are underdeveloped (Picotte et al. 2020;
Hawbaker et al. 2020a; Teske et al. 2021). Improving regional characterisation of burn
severity, quantified as the degree of loss of aboveground and soil organic matter and the
corresponding change in spectral reflectance (Keeley 2009), is important to improve
estimates of emissions (Larkin et al. 2014), fuel loads (Boisramé et al. 2022), wildfire risk
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(Kolden 2019) and impacts to natural resources (Weiss et al.
2019), as well as to inform invasive plant management
(Alba et al. 2015).

Southeastern forests, savannas and grasslands have a long
history of fire, with Indigenous people maintaining a frequent
fire regime prior to colonisation (Fowler and Konopik 2007;
Ryan et al. 2013). European settlers burned to encourage
grasses for cattle grazing, and since the 1800s, to manage
for northern bobwhite ‘quail’ (Colinus virginanus) (Johnson
and Hale 2002). In more recent decades, burning on both
public and private lands is also applied to benefit timber
production, reduce hazardous fuel loads, restore ecosystems
and enhance wildlife habitat (Addington et al. 2015; Kobziar
et al. 2015; Mason and Lashley 2021). The smaller size of
Southeast fires, relative to the western US, is typically attrib-
uted to constraints on the application of prescribed fire and
landscape fragmentation into smaller parcels (Kobziar et al.
2015), which limits the spread of accidental and lightning-
ignited fires (Johnson and Hale 2002). As burn severity gen-
erally increases with time since fire and associated fuel accu-
mulation (Godwin and Kobziar 2011; Malone et al. 2011),
land managers aim to apply prescribed fire intervals that are
as short as feasible to preclude higher-severity wildfires
(Johnson and Hale 2002; Kobziar et al. 2015). Remotely
tracking burned area and severity from these small, low-
intensity fires is challenging, exacerbated by high annual
precipitation and frequent summer afternoon thunderstorms
that result in regular cloud cover, reducing the frequency of
clear images (Picotte and Robertson 2011a; Vanderhoof et al.
2021). Additionally, most of the fire-dependent communities
in the region are characterised by rapid rates of regrowth from
perennial vegetation that survives fire, shortening image
selection windows and making accurate field data collection
difficult (Godwin and Kobziar 2011; Malone et al. 2011).

The remote characterisation of burn severity has com-
monly relied on the Normalized Burn Ratio (NBR) spectral
index or the differenced NBR (dNBR) index mapped from
pre- and post-fire NBR images (Picotte et al. 2021; Miller
et al. 2023). Although widely used, dNBR depends in part on
the amount and type of pre-fire vegetation (Zhu et al. 2006).
Consequently, other burn severity indices, including the
relative dNBR (RANBR; Miller et al. 2009) and the relati-
vised burn ratio (RBR; Parks et al. 2014), have emerged to
help control for the effects of pre-fire vegetation. These are
particularly helpful in unforested areas where NBR can
respond more to soil wetness than plant coverage (Malone
et al. 2011; Salvia et al. 2012). A lack of consensus for a
preferred spectral index (Whitman et al. 2020; Howe et al.
2022; Saberi and Harvey 2023) has resulted in burn severity
products often providing multiple indices or reporting a
categorical severity value. Burn severity is most comprehen-
sively mapped by (1) the MOSEV global burn severity data-
base and a global Landsat forest burn severity (He et al
2024), both of which attribute burn severity for the
Moderate Resolution Imaging Spectroradiometer (MODIS)

burned area product (MCD64A1; Alonso-Gonzélez and
Ferndndez-Garcia 2021), (2) the Monitoring Trends in
Burn Severity (MTBS) product (Eidenshink et al. 2007),
which maps fires >400 hectares in the western US and
>200 hectares in the eastern US from Landsat products
(Picotte et al. 2020), and (3) Burned Area Emergency
Response (BAER) and Rapid Assessment of Vegetation
Condition (RAVG) assessments, which both map burn sever-
ity on federal forestlands (Hudak et al. 2007). Collectively,
these efforts produce consistent burn severity maps for large
wildfires across the US and most fires on federal land.
However, they do not map burn severity for small wildfires,
most prescribed fires and many fires on private lands, com-
plicating efforts to track complete patterns of burned area
and severity over time.

Ecological interpretation of remotely sensed burn sever-
ity estimates commonly relies on Composite Burn Index
(CBI) field plots (Key and Benson 2006). CBI assesses dam-
age to substrates and above-ground biomass using a contin-
uous index with values ranging from 0.0 (unburned) to 3.0
(high severity). The statistical relationships between CBI
and NBR or dNBR tend to reflect post-fire vegetation condi-
tion more than soil condition (Hudak et al. 2007). CBI plots
have been effectively related to dNBR across the western
and conterminous US (CONUS) using correlation (He et al.
2024), multiple regression approaches including polynomial
regression models (Zhu et al. 2006), sigmoidal regression
models (Lutz et al. 2011; Picotte et al. 2021) and non-linear
least squares regression models (Howe et al. 2022), as well
as multi-variable random forest models (Parks et al. 2019).
Even so, obtaining adequate accuracy across the Southeast
remains challenging. For example, although the model of
Parks et al. (2019) showed a strong explanatory power
across CONUS, the accuracy for Florida, where most of the
model’s Southeast training points were located, was poor.
Studies focusing on selected, common natural community
types in Florida and Georgia have successfully related CBI
with NBR and dNBR (e.g. Godwin and Kobziar 2011; Picotte
and Robertson 2011b); however, they have not been vali-
dated for broader geographic application.

Improving our characterisation of burn severity across
the Southeast will provide data useful to monitor silvicul-
ture and ecosystem condition and support prescribed fire
and ecosystem restoration (Larkin et al. 2014; Weiss et al.
2019; Jaffe et al. 2020). Here, we built on localised efforts
within the Southeast (e.g. Godwin and Kobziar 2011;
Malone et al. 2011; Picotte and Robertson 2011b) to
improve our capacity to map burn severity at landscape
scales across the region. We used CBI plot data compiled
across CONUS (Picotte et al. 2019) to develop a machine
learning model that includes spectral indices from multiple
windows to map burn severity. The model was applied to all
burned areas across the Southeast (2000-2022) mapped by
the US Geological Survey’s Landsat Burned Area (BA) prod-
uct, which identifies burned area >2 ha, regardless of fire
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type (wildfire or prescribed) or land ownership (Hawbaker
et al. 2020a). Focusing on forested areas identified as
burned by the BA product, we sought to characterise pat-
terns and trends in burn severity across the region. Our
research questions included:

1. Can we improve on efforts to map burn severity in the
Southeast?
. How do vegetation and forest type influence burn severity?
3. Are there annual trends in average burn severity over the
study period?
4. Is burn severity influenced by fire history (i.e. recent fire
frequency) and fire type (i.e. prescribed or wildfire)?

N

Methods

Study area

Our study area extends across most of the Southeast, includ-
ing the entirety of Florida, Georgia, South Carolina, North
Carolina, Alabama, Mississippi, Louisiana, and parts of Texas,
Kentucky, Tennessee, Arkansas and Virginia (Fig. 1). The
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extent was defined by the Southeast FireMap project (Tall
Timbers 2024), which in turn was based on the historical
distribution of longleaf pine (Pinus palustris), a native pine
species that is highly dependent on fire and the focus of
conservation and restoration efforts across its extent
(Barnett 1999). Much of this region is part of the Southeast
Plains and Coastal Plains ecoregions (Omernik and Griffith
2014), notable as global biodiversity hotspots (Noss et al.
2015) and a significant producer of forest products
(Howard and Liang 2019). Land cover is dominated by forests
(34%), woody wetlands (14%), agriculture (22%) and devel-
oped areas (10%) (Homer et al. 2020). Forested systems most
commonly include pine plantations, unmanaged closed-
canopy broadleaf forests in uplands or wetlands, and open-
canopy forests, woodlands and savannas. On the modern
landscape, dominant tree species include loblolly pine
(P. taeda 1.), shortleaf pine (P. echinata Mill.), longleaf
pine, slash pine (P. elliottii Engelm.), and many species of
oak (Quercus spp.) and other broadleaf deciduous tree species
(Ruefenacht et al. 2008). Annual precipitation across the
region averages 1324 mm, while annually the maximum
and minimum temperature averages 24.4 and 12.0°C, respec-
tively (1990-2020; Abatzoglou 2013).
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Fig.1.

Study area extent in relation to burn frequency or burn count, derived from the Landsat Burned Area product

at an annual time step (1984-2022). Longer time range provided to reflect long-term geographic differences in burn

frequency.
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CBI training data

We used CBI plot data collected across the CONUS for model
training and validation, while targeting performance
improvements in the Southeast. Utilising the CONUS-wide
burned CBI plots, relative to the Southeast alone, provided
training data across more geographically diverse fire events,
represented greater variability in burn severity and added
more high burn severity training data for use in our
Southeast-focused application. The CBI data included 5532
plots from multiple independent projects or field campaigns
following 232 fire events occurring between 1996 and 2018
compiled by Picotte et al. (2019). These data were supple-
mented with an additional 276 CBI plots from 23 fires
collected in 2017 and 2018 across Arizona and New
Mexico (Reiner et al. 2022), for a total of 5808 forested
burned CBI plots, including 904 prescribed and wildfire
burned CBI plots across the Southeast (Fig. 2a). A total of
438 (7.5%) CBI plots were removed during data checks if
they did not have a recorded fire date (n = 26), had notably
erroneous plot locations (n = 15), or occurred in grasslands
or agriculture fields as determined using high-resolution
aerial imagery (n = 264). We also excluded plots if field
measurement occurred more than 1 year post-fire in sub-
tropical regions, defined here as Florida, owing to rapid

revegetation obscuring post-fire effects (n = 133) (Key
and Benson 2006). Unburned CBI plot data were excluded
as well because sampling was inconsistent across the data-
sets. Instead, a stratified sampling approach was employed
to generate 552 unburned (i.e. CBI = 0) pseudo-plots pro-
portional to approximately 10% of the CBI plots collected
for each individual fire event. We generated randomly dis-
tributed pseudo-plots within 500 m-1 km of collected field
plots, excluding areas mapped as burned by the Landsat BA
product. To control for spectral outlier values, pseudo-
absence plots with dNBR values below the 2.5th and
above the 97.5th percentile were also removed. CBI plots
were excluded from model development if insufficient imag-
ery, as described in the ‘Landsat image selection and pre-
processing’ section, was available to generate all spectral
predictor layers. These exclusions left 5038 burned field
plots and 495 unburned pseudo-plots (total = 5533) across
CONUS that were used in model development (Fig. 2).
Within the Southeast, plots included 598 burned field
plots and 57 unburned pseudo-plots, representing 11.8%
of the CBI plots. CBI median * s.d. was 1.64 + 0.77 across
CONUS compared with 1.49 = 0.53 across the Southeast,
and while 991 plots across CONUS had a CBI of >2.5, only
34 occurred within the Southeast.
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Fig. 2. (a) Locations of Composite Burn Index (CBI) field plots used to develop the burn severity model; (b) histograms of plot counts by

CBI value for CBI values >0 across the conterminous US; and (c) within the Southeast study area; and (d) pre-fire and post-fire image
selection approach where, for each spectral variable, the (1) initial assessment, (2) extended assessment, (3) initial post-fire image, and (4)
extended post-fire image values were considered as potential model variables. NBR, Normalized Burn Ratio.
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Landsat image selection and pre-processing

We attributed the CBI plot data using Landsat Surface
Reflectance 5-8 Collection 2 imagery. Cloud, cloud shadow,
open water and snow pixels were masked using the Function
of Mask (FMask; Zhu and Woodcock 2014). To determine
suitable model predictors, we considered the spectral bands:
red, NIR (near infrared), SWIR1 (shortwave infrared) and
SWIR2, as well as spectral indices that have previously been
shown to be helpful in evaluating fire effects and post-fire
vegetation conditions (Table 1). For each spectral index and
band, we calculated (1) initial post-fire assessment from pre-
and post-fire imagery, (2) extended post-fire assessment
from pre- and post-fire imagery, (3) initial post-fire image,
and (4) extended post-fire image values (Fig. 2d). Initial
assessments evaluated same-season post-fire imagery to
reflect immediate, first-order fire impacts, whereas extended
assessments evaluated imagery the following year to
account for delayed mortality and survivorship (Key and
Benson 2006). We calculated initial assessments with a
post-fire Landsat scene that was uniquely selected for each
burned pixel by identifying the date of lowest NBR (i.e.
highest severity) in the 2-month period following fire detec-
tion. Previous research in the region has determined that
burn severity assessment should be conducted within
2 months following a fire to account for rapid post-fire
regrowth of top-killed vegetation that can obscure spectral
signatures and reduce model performance (Picotte and
Robertson 2011a). Extended assessments were measured
using a post-fire composite image, generated from the
median pixel value 1-year post-fire (Busby et al. 2023).
Pre-fire images were generated from 2-month median
image composites 1 year pre-fire for initial assessments
and immediately preceding the fire event for extended
assessments (Fig. 2d). Although minimal differences have
been found between using paired images (one pre- and post-
fire image) versus image composites, compositing, or aver-
aging across multiple images, can be more easily automated
(Whitman et al. 2020; Saberi and Harvey 2023). When
differencing pre- and post-fire imagery, an offset value
differencing the imagery within unburned vegetation can
help account for phenological differences between pre- and
post-fire image dates (Miller and Thode 2007; Miller et al.
2009). After testing the application of automated offset
values representing a range of unburned buffers from
100 m to a Landsat Analysis Ready Data (ARD) tile, we
found that applying offset values showed no improvement
in model performance, similarly to Picotte and Robertson
(2011b), and they were therefore not used in model devel-
opment or application.

Long-term climate patterns help determine fire regimes,
in part owing to their influence on vegetation type and
condition (Liu and Wimberly 2015). Therefore, we also
considered the normal (1990-2019) annual (1) precipitation
(PR), (2) potential evapotranspiration (PET), and (3) aridity

index (AI, PET/PR) derived from TerraClimate (~4 km;
Abatzoglou et al. 2018) as potential covariates in the
model. As fuel loads are seasonally dependent, fire season-
ality was also considered where the fire day of year (DOY),
as reported in the CBI metadata, was binned into winter
(DOY 335-59), spring (DOY 60-151), summer (DOY
152-243) and fall (DOY 244-334). A complete list of the
variables considered is shown in Table 1.

Model development

CBI plots of burn severity were modelled as a function of
Landsat-derived variables, including spectral indices calcu-
lated from post-fire, initial and extended assessment win-
dows, as well as long-term climate variables. We used the
eXtreme Gradient Boosting model, XGBoost (Chen and
Guestrin 2016), a machine learning algorithm that uses a
gradient boosting decision tree framework with regularisa-
tion processes to avoid overfitting and improve generalisa-
bility. During model fitting, we evaluated 432 unique
hyperparameter combinations (selected hyperparameters
are shown in bold), including number of trees [300, 500,
700], maximum tree depth [0, 3, 5], minimum child weight
[3, 5, 7, 10], learning rate [0.01, 0.05, 0.10, 0.30], gamma
[0.0, 0.2, 0.4], and subsampled data splits [0.8]. Including
highly correlated covariates in decision tree models can bias
model predictions and deflate variable importance, making
models difficult to interpret (Murphy et al. 2010; Dormann
et al. 2013). Therefore, we used a stepwise forward selection
routine to concurrently identify the optimal set of hyper-
parameters and predictors (Sherrouse and Hawbaker 2023).
For each hyperparameter combination, predictors were
sequentially tested and selected for inclusion based on
which predictors minimised model root mean square error
(RMSE). During each step, remaining predictors were
removed if they were highly correlated (R > 0.70) with
any of the selected predictors. This process was repeated
until the improvement in the model’s RMSE was <1.0%
with any additional variables. The iterative predictor selec-
tion process was performed using grouped five-fold cross
validation across all model hyperparameter combinations to
identify the best-performing model that minimised RMSE.
To evaluate model performance (e.g. R* and mean square
error (MSE)), we used grouped k-fold cross-validation (e.g.
Gallagher et al. 2020). The entire dataset was divided into
five folds and grouped by fire event to avoid training and
testing on the same fire. The model was trained on all folds
except one and evaluated on the remaining fold in each
iteration. Model performance was averaged across the five
iterations. Variable permutation importance was calculated
by permuting features 100 times to evaluate model variable
importance for both CONUS and the Southeast. Permutation
importance provides a more robust assessment of each vari-
able’s contribution to model predictions by evaluating per-
formance on a test set, while randomly shuffling individual
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Table 1. Spectral and environmental variables considered for inclusion as model predictors.

Predictor type Time frame Name Abbreviation Definition Reference
Landsat Bands Initial assessment Red Red Landsat TM/ETM + Band 3, OLI Band 4 =
Extended assessment Near infrared NIR Landsat TM/ETM + Band 4, OLI Band 5 -
Initial post-fire image Shortwave infrared 1 SWIRI Landsat TM/ETM + Band 5, OLI Band 6 -
Extended post-fire Shortwave infrared 2 SWIR2 Landsat TM/ETM + Band 7, OLI Band 7 -
image
Spectral Initial assessment Normalized Burn Ratio NBR NIR — SWIR2/NIR + SWIR2 Garcia and Caselles (1991),
indices Key and Benson (2006)
Extended assessment Normalized Burn Ratio 2 NBR2 SWIRT — SWIR2/SWIRT + SWIR2 Garcia and Caselles (1991),
Key and Benson (2006)
Initial post-fire image Normalized Burn Ratio NBRT (NIR - (SWIR2 x Thermal))/(NIR + (SWIR2 x Thermal)) Holden et al. (2005)
Thermal
Extended post-fire Normalized Difference NDVI NIR — Red/NIR + Red Tucker (1979)
image Vegetation Index
Normalized Differenced NDMI NIR — SWIRI/NIR + SWIRI Gao (1996)
Moisture Index
Enhanced Vegetation Index EVI 2.5 x (NIR - Red)/(NIR + (6.0 x Red) - (7.5 x Blue) + 1.0) Huete et al. (2002)
Soil Adjusted Vegetation SAVI 1.5 x (NIR-Red)/(NIR + Red + 0.5) Huete (1988)
Index
Burned Area Index BAI 1/((0.1 - Red)* + (0.06 - NIR)?) Chuvieco et al. (2002)
Char Soil Index csl NIR/SWIR2 Smith et al. (2007)
Global Environmental GEMI n x (1.0-0.25 x #) - ((Red - 0.125)/(1 - Red)); Pinty and
Monitoring Index 7= (2 x (NIR? - Red?) + (1.5 x NIR) + (0.5 x Red))/(NIR + Red + 0.5) Verstraete (1992)
Mid InfraRed Burn Index MIRBI (10.0 x SWIR2) - (9.8 x SWIRI) + 2.0 Trigg and Flasse (2001)
NIR-red ratio Vi43 NIR/Red Tucker (1979)
NIR-SWIRI ratio Vi45 NIR/SWIRI Epting et al. (2005)
SWIRI-SWIR2 ratio VI57 SWIRI/SWIR2 Epting et al. (2005)
Climate 30-year (1990-2019) Potential evapotranspiration PET - Abatzoglou et al. (2018)
Normalized L
annual mean Precipitation PR - Abatzoglou et al. (2018)
Aridity index Al PET/PR Abatzoglou et al. (2018)
Season Season of fire event Fire season Fire season Burn date in day of year 335-359 (winter), 60151 (spring), 152-243 (summer), -

244-334 (fall (autumn))

TM, Thematic Mapper; ETM+, Enhanced Thematic Mapper Plus; OLI, Operational Land Imager.
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features to better reflect model generalisability and predic-
tive power. Variables that show a greater decrease in accu-
racy score on exclusion indicate higher importance to model
prediction.

CBI model application to the Landsat BA product

The gradient boosted decision tree model was applied to
pixels that were already identified as burned using the
Landsat BA product (30-m resolution; 1984-present;
Hawbaker et al. 2020a, 2020b), which operationally maps
burned area extent for Landsat Collection 2 imagery across
CONUS with <80% cloud cover. Both wildfires and pre-
scribed fires >2 ha are mapped, but fire type is not distin-
guished. Validated with commercial, high-resolution
imagery, the Landsat BA product showed an omission (i.e.
false negative) and commission (i.e. false positive) error of
19 and 41% for CONUS, and 45 and 37% for the eastern US,
respectively (Hawbaker et al. 2020a). Although the Landsat
BA product maps more burned area in the Southeast com-
pared with other burned area products such as MTBS or
MODIS MCD64A1 (Hawbaker et al. 2020a), we acknowl-
edge that the product still under-maps low-severity pre-
scribed fire (Teske et al. 2021; Vanderhoof et al. 2021).
Sources of error intrinsic to the image collection, such as
poor or uneven atmospheric conditions, residual clouds or
cloud shadows, or surface reflectance conversion errors, can
introduce higher-than-expected rates of commission error in
a minority of images. Consequently, all classified images
were visually reviewed and problematic images were
removed (1.4% of classified images) prior to creating annual
composites from the time series (Hawbaker et al. 2020b).
We applied the burn severity model to the annual suite of
Landsat BA products (2000-2022) across 76 Landsat ARD
tiles (~150 X 150 km each). The fire date was defined
using the annual burn date raster, which represents the day
of year (1-366) of the first Landsat scene in which a burned
area was observed. Consequently, if a pixel burned more
than once in a year, burn severity would be calculated for
the first fire event only. The percentage of burned pixels that
lacked one or more clear-sky observations representing
either pre- or post-fire conditions was substantially greater
prior to 2000; therefore, the burn severity model was
applied to the annual Landsat BA products for 2000-2022.
Each unique burn date was used to identify corresponding
2-month windows for the 1-year pre- and post-fire dates and
immediate pre- and post-fire dates (Fig. 2d). The pixel burn
date was also applied to attribute fire seasonality, using the
burn date DOY as defined in the ‘Landsat image selection
and pre-processing’ section. The generated predictor stack
for each unique burn date was used to predict CBI values
from the trained model. CBI values were not predicted for
pixels that lacked predictor imagery (average of 7.3% of
burned area annually, ranging from 3% in 2004 to 24% in
2013) owing to extensive cloud cover or other image quality

constraints. Pixels predicted to have a CBI < 0 were a
minority case (<0.0001% of pixels) and were reclassified
as CBI = 0.001.

Burn severity patterns

To evaluate spatial and temporal patterns in burn severity,
we randomly generated 50,000 points per year (2000-2022)
across our mapped burn severity. The points were limited to
non-grassland and non-agriculture Southeast burned area
(n = 1,150,000), and herein are referred to as the sampled
predicted CBI points. Fire activity within grassland and
agricultural areas was assumed to either result in the near-
complete combustion of vegetation or represent a highly
managed land use and was therefore excluded from the
analysis. Agriculture and grassland extent was defined as
herbaceous, pasture/hay and cultivated crop cover type, as
mapped by the National Land Cover Database (NLCD;
Homer et al. 2020) using the nearest NLCD year (2001,
2006, 2011, 2016, 2019, 2021). Sampled predicted CBI
points were selected to be a minimum of 200 m from one
another to minimise the influence of spatial autocorrelation
in the analysis of burn severity.

Patterns in burn severity were summarised by forest type
(Ruefenacht et al. 2008), land cover using nearest year
NLCD (Homer et al. 2020) and public—private land owner-
ship (PAD-US 3.0; US Geological Survey (USGS) 2022).
Forest types that represented >2% of the burned area
were reported. As the MTBS dataset (Eidenshink et al.
2007) is the most comparable burn severity dataset, MTBS
burn severity was visually compared with the model-
predicted burn severity. Burn severity within MTBS is cate-
gorical and low severity is assigned as the default value in
herbaceous vegetation types (Picotte et al. 2020). Therefore,
comparisons with MTBS were restricted to burned areas
dominated by forest, shrub, or woody wetland vegetation
types as defined by NLCD.

We limited our evaluation of temporal trends in burn
severity to forested land cover, where most fires in the
region occur, defined using the nearest year NLCD. We
used the non-parametric Mann-Kendall test for significant
temporal trends. Trends in forest burn severity were sepa-
rated into months in which prescribed fire dominates
(December—-April; Cummins et al. 2023) and months in
which wildfire dominates (May-November; Slocum et al.
2007; Donovan et al. 2023), recognising the co-occurrence
of both fire types within a given month is common.
Additionally, as burn severity is influenced by meteorologi-
cal conditions (Parks and Abatzoglou 2020), we correlated
the sampled predicted CBI points to annual average Palmer
Drought Severity Index (PDSI). As the Mann-Kendall test is
most commonly utilised for trend analysis, we applied the
non-parametric Spearman Rank-Order Correlation. Monthly
PDSI was derived from TerraClimate (4 km), where increas-
ing positive values represent wetter conditions and
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decreasing negative values represent drier conditions
(Abatzoglou et al. 2018).

Differences in burn severity attributable to fire type (pre-
scribed fire versus wildfire) were further explored by com-
piling burn polygons attributed with burn type across the
Southeast. Sources of attributed burned area included the
(1) LANDFIRE Public Events Geodatabase (LANDFIRE
2022), (2) the Southeastern US Prescribed Fire Permit
Database (Cummins et al. 2023), and (3) the Fire Program
Analysis fire-occurrence database (FPA FOD) (Short 2022).
Attributed burned area was required to be colocated with an
area mapped as burned by the Landsat BA product in the
same year while occurring within a forested NLCD land
cover type. The FPA FOD and southeastern US Prescribed
Fire Permit Database are points datasets. These points were
limited to those with a burn type attributed as wildfire (e.g.
incendiary, arson, or wildfire) or prescribed burn (e.g.
broadcast burn, prescribed burn, or hazardous fuel reduc-
tion). Points were excluded for alternative burn types,
including burn piles. Points with over 25 records for the
same coordinates were also excluded as this suggested that,
even after accounting for the possibility of consecutive day
permit requests, a non-specific location (e.g. a county cen-
troid) was likely reported. Remaining points were converted
to an attributed polygon extent, reflecting the corresponding
polygon record from the Landsat BA product, and compiled
with the LANDFIRE attributed polygons.

We limited the sampled predicted CBI points
(n = 1,150,000) to those overlapping the forested burned
area attributed as prescribed (n = 183,831) or wildfire
(n = 88,826) (Supplementary Fig. S1). To test the influence
of fire type on burn severity, differences in CBI burn severity
between prescribed and wildfire were evaluated by forest
type (Ruefenacht et al. 2008). To test the expectation that
more frequent fires may reduce burn severity (Hunter and
Robles 2020), we categorised burn frequency or burn count
(2000-2022) as (1) 1 fire, (2) 2-3 fires, and (3) 4+ fires
(Vanderhoof et al. 2022). Significant differences in CBI
values were determined using the non-parametric Welch
Satterthwaite t-test.

Results

Model performance

The selected model had an RMSE of 0.48, an MSE of 0.23
and an R? of 0.70 for CBI predictions across CONUS. Model
performance was similar but slightly weaker within the
Southeast alone, with an RMSE of 0.50 and MSE of 0.26;
however, the explanatory power was weaker relative to
CONUS, with an R? of 0.37 (Table 2, Fig. 3). Despite the
lower explanatory power, when residuals were compared by
burn severity category, the Southeast had a lower mean
absolute residual for observed low (residuals = 0.31

Table 2. Composite Burn Index (CBI) model performance (shaded
grey) relative to previously published national CBI modelling efforts.

Geographic extent R? RMSE Source

CONUS 0.70 0.48 Modelled results
CONUS 0.58 0.58 Picotte et al. (2021)
CONUS 0.72 0.47 Parks et al. (2019)
Southeast 0.37 0.50 Modelled results
Southeast 0.18 0.69 Picotte et al. 2021
Florida 0.01 0.53 Parks et al. (2019)
North Carolina <0.01 0.57 Parks et al. (2019)

The Southeast results were calculated from the CBI observations within our
study area. Results for states located entirely within the study area are
presented for Parks et al. (2019). CONUS, conterminous United States.

compared with 0.38, respectively) and moderate (resi-
duals = 0.34 compared with 0.37, respectively) burn severity
relative to the non-Southeast (Table 3). For the non-
Southeast, in contrast, high burn severity showed the lowest
absolute residuals of any severity class, 0.32, and much lower
absolute residuals than high-severity plots in the Southeast
(residuals = 0.84) (Table 3). In comparing residual values in
the growing season relative to the dormant season, the non-
Southeast had a lower mean absolute residual in the growing
season relative to the Southeast, but within the Southeast, the
dormant season,relative to the growing season had a lower
mean absolute residual, suggesting that burn severity predic-
tions in the Southeast were not impacted by dormant season
conditions (Table 3).

The lower explanatory power in the Southeast was partly a
consequence of a smaller range of variability in CBI compared
with CONUS (Fig. 2c). Outside the Southeast, CBI = 2.5 and
CBI = 2.7 comprised 18 and 11% of the CBI plots, respec-
tively. In comparison, within the Southeast, CBI = 2.5 and
CBI = 2.7 comprised 3 and 0.5% of the CBI plots, respec-
tively. R* values are influenced by the range of variability in
the response variable. To demonstrate this effect, we ran-
domly sampled non-Southeast CBI plots =2.7 at a 25%
sampling rate (n = 134) to artificially increase the propor-
tion of high-severity plots, as defined in Table 3, to 50% of
the region’s moderate-burn severity plot count. Including
these high-severity non-Southeast plots, the explanatory
power increased from R = 0.37 to R® = 0.62.

The selected predictors included two extended assess-
ment variables, dNBR and dSWIR1 (differenced shortwave
infrared 1), two initial assessment variables, dBAI
(differenced Burned Area Index) and dNBR2, an extended
post-fire image variable, vi57 (SWIR1/SWIR2 ratio), as well
as the fire season, and normal annual PET and PR (Table 1,
Fig. 4). Permutation importance calculations showed that all
variables had a significant (P < 0.01) influence on model
performance, with a positive decrease in accuracy scores for
all calculated iterations. For CONUS, the dNBR extended
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Table 3. Differences in mean absolute residuals across the Southeast
compared with outside of the Southeast by burn severity class derived
from the observed Composite Burn Index (CBI) (low: <1.25, moderate:
>125 and =2.25) and season (dormant: 15 November—28 February,
growing: 1 March-14 November). s.d., standard deviation.

Burn severity Region Mean absolute Count

class residual (s.d.)

Unburned Southeast 0.67 (0.355) 57

Unburned Non- 0.48 (0.403) 438
Southeast

Low Southeast 0.31 (0.235) 228

Low Non- 0.38 (0.285) 1543
Southeast

Moderate Southeast 0.34 (0.267) 336

Moderate Non- 0.37 (0.294) 1577
Southeast

High Southeast 0.84 (0.395) 34

High Non- 032 (0.287) 1320
Southeast

Season Region Mean absolute Count

residual (s.d.)

Dormant Southeast 0.34 (0.261) 155

Dormant Non-Southeast 0.51 (0.375) 75

Growing Southeast 0.40 (0.321) 500

Growing Non-Southeast 0.37 (0.302) 4803

assessment showed the greatest variable permutation impor-
tance, followed by the vi57 extended post-fire image
(Fig. 4), reflecting the influence of delayed mortality in
western forest fires. In contrast, the Southeast model
depended most strongly on the dNBR extended assessment

and the dBAI and dNBR2 initial assessments, indicating a
greater regional importance of initial assessment variables
(Fig. 4). Although climate and fire season variables were
selected for inclusion, they showed lower variable impor-
tance, such that the coarser native spatial resolution of these
variables was not visually evident in the mapped burn
severity. An example of how the CBI plots translated to
MTBS and modelled CBI burn severity is shown in
Supplementary Fig. S2.

Spatial patterns of burn severity

The Landsat BA product mapped a total of 171,350 km? of
burned area (median of 7147 km? burned per year) across
the Southeast from 2000 to 2022. Although CBI burn sever-
ity was variable within individual fires, low to moderate
burn severity dominated across the region (Fig. 5). Burn
severity was mapped for many wildfires and prescribed
fires that were too small to be mapped by other programs
such as MTBS or MOSEV. Examples of differences between
the Landsat BA product and MTBS in mapped burned area
extent and corresponding burn severity are shown in Fig. 6,
which shows prescribed burns within Fort Stewart’s Back
Gate (Fig. 6a), the Apalachicola National Forest (Fig. 6b)
and tree plantations on private land (Fig. 6¢). Fig. 7 repre-
sents our general observation that where a fire is mapped by
both datasets, the CBI burn severity and MTBS appear to be
detecting similar underlying patterns in burn severity, in
part reflecting overlap in the indices used.

Average burn severity was greatest in emergent herba-
ceous wetlands (CBI = 1.39) and woody wetlands
(CBI = 1.31), and lowest in deciduous forest (CBI = 1.00)
(Table 4). Within forest types, average burn severity was
highest in bald cypress and water tupelo forests
(CBI = 1.38). Within pine forest types, slash pine showed
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Fig. 5. Predicted Composite Burn Index (CBI) or burn severity across the study area (2000—2022). Where repeat fires
occurred, the median CBI value is shown. Although our analysis excluded agricultural and grassland burned areas, burn
severity for all vegetation types is shown here for informational purposes only.

the highest burn severity (CBI = 1.32), and loblolly pine the =~ Temporal trends in burn severity
lowest (CBI = 1.11) (Table 4). Public land comprised only
10.9% of the study area but showed a higher median CBI
than private burning, 1.23 relative to 1.18, respectively, and
contributed 37.6% of the total area burned (Table 4).

Over the 23 years analysed for this study, we observed a
significant (P < 0.001) decline in average mapped CBI burn
severity (Fig. 8a). This decline was evident in months in
which prescribed fire dominates (December—May) as well as
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(c) 2018; and (3) corresponding modelled Composite Burn Index (CBI) burn severity for the areas mapped as burned by the

Landsat Burned Area Product.

months in which wildfire dominates (June-November)
(Fig. 8b). Testing for the potential influence of meteorologi-
cal conditions on the temporal trends, we observed a signif-
icant negative correlation between PDSI and CBI, indicating
greater average burn severity in drier years. This correlation
was significant in both forest (deciduous, mixed, evergreen)
and woody wetland vegetation types (Fig. 8c).

Influence of fire type on burn severity

Relative to wildfires and across forest types and fire frequen-
cies, prescribed burns consistently showed a lower average
burn severity (Supplementary Fig. S3). However, all three
pine forest types showed a convergence in burn severity as
fire frequency increased. For example, loblolly pine showed
a substantial difference in burn severity between prescribed
and wildfires (median CBI difference of 0.40-0.42) where
fire frequency was lower (i.e. 1-3 burns within the 23 year
period), but this difference declined to a CBI difference of
0.12 where fire frequency was high (i.e. 4+ burns)

(Supplementary Fig. S3). Similarly, in longleaf pine, the
differences in severity between prescribed and wildfire
diminished as fire frequency moved from a single fire to
moderate fire, and then high fire regime, with the mean
CBI difference decreasing from 0.16 to 0.08, and 0.02,
respectively. The exception to this pattern was the bald
cypress/water tupelo forested wetland type, for which
severity progressively increased with greater fire frequency
(Supplementary Fig. S3).

Discussion

Addressing regional challenges to mapping burn
severity

In this analysis, we predicted continuous CBI burn severity
values for areas in the Southeast mapped as burned by the
Landsat BA product, encompassing >170,000 km?* of
burned area over a 23-year period. This effort produced
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the most inclusive post-fire burn severity data for the region
to date, mostly notably contributing new burn severity data
for small and prescribed fires that are the most challenging
to map and characterise. Average CBI by land cover ranged
from 1.00 to 1.39, suggesting that most of the burned area in
the Southeast is of low burn severity, a finding consistent
with prior efforts in the region (Picotte and Robertson
2011b; Picotte et al. 2021). While the present effort greatly
expanded burn severity data, the burned area product still
shows higher rates of omission across the Southeast relative
to other regions (Hawbaker et al. 2020a) and under-maps
prescribed fire in particular (Melvin 2020), suggesting that

the goal of providing complete fire datasets for the
Southeast is still ongoing.

In this effort, image selection and model variables were
used to help address some of the challenges inherent to a
Landsat-based burn severity mapping approach in the
Southeast, including frequent cloud cover, rapid post-fire
revegetation and the dominance of low burn severity associ-
ated with prescribed fires (Godwin and Kobziar 2011; Picotte
and Robertson 2011b; Vanderhoof et al. 2021). Although
models developed for the western US predominantly rely
on dNBR and extended assessment imagery windows
(Miller et al. 2023), we also considered initial assessments
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Table 4. Total burned area (2000-2022) and predicted Composite
Burn Index (CBI) values by land cover, forest type and land ownership.

Land cover Total area burned Median
(km?) (relative %) CBI (s.d.)
Evergreen forest 42,532 (24.8%) 117 (0.38)
Woody wetlands 24,953 (14.6%) 1.31 (0.46)
Shrub/scrub 12,953 (7.6%) 1.26 (0.41)
Emergent herbaceous 11,597 (6.8%) 1.39 (0.43)
wetlands
Deciduous forest 7023 (41%) 1.00 (0.40)
Mixed forest 4584 (2.7%) 1.06 (0.44)
Landowner Total area burned Median
(km?) (relative%) CBI (s.d.)
Public 64,409 (37.6%) 1.23 (0.41)
Private 106,906 (62.4%) 118 (0.44)
Forest type Total area burned Median
(km?) (relative %) CBI (s.d.)
Loblolly pine 38,456 (22.4%) 111 (0.40)
Slash pine 25,237 (14.7%) 1.32 (0.40)
Longleaf pine 8895 (5.2%) 1.27 (0.30)
Loblolly pine/hardwood 4361 (2.5%) 1.08 (0.38)
Mixed upland 4093 (2.4%) 113 (0.40)
hardwoods
Bald cypress/water 4020 (2.3%) 1.38 (0.44)
tupelo
White oak/red oak/ 3837 (2.2%) 1.03 (0.41)
hickory
Sweetbay/swamp 3609 (2.1%) 129 (0.42)
tupelo/red maple
Other forest types 12,035 (7%) 115 (0.44)

Total area burned based on the annual Landsat Burned Area product. Of the
total burned area, 39% was in land cover types not included in the analysis.
Median CBI calculated from the sampled points with the standard deviation
(s.d.) in parentheses. Forest types representing <2% of burned area were
consolidated into the ‘other forest types’ class.

to capture immediate post-fire effects. Initial assessment vari-
ables of dBAI and dNBR2, for example, both showed greater
variable importance in the Southeast relative to CONUS. This
finding suggests that a regional model that could rely more
heavily on initial assessments may be preferable if we had a
greater abundance of CBI data representing diverse ecosys-
tems and burn severities across the region. As the range of
burn severity in the Southeast was more truncated (Fig. 2),
we utilised the full CONUS CBI dataset, taking advantage of
western forest plots that can be ecologically and structurally
similar to the Southeast (Bigelow et al. 2017). This approach
provided a broader range of fire conditions on which to train
the model, but the more limited range of CBI values in the
Southeast likely influenced the regional model performance
metrics (Gelman and Hill 2007).

Creating unburned CBI pseudo-plots in the Southeast was
also a challenge. We documented higher mean absolute
residuals for unburned pseudo-plots in the Southeast com-
pared with the non-Southeast (Table 3). This could be attrib-
uted to under-mapped prescribed fires (Melvin 2020),
expansive silviculture activities (Howard and Liang 2019)
and seasonal fluxes in forested wetland water level (Malone
et al. 2011; Salvia et al. 2012) creating greater regional
spectral variability. Expansion of CBI data collection in the
Southeast, as well as considering alternatives to CBI (e.g.
Miller et al. 2023) that may be more reflective of Southeast
fire regimes will likely benefit future national burn severity
modelling efforts.

Considering diverse spectral indices associated with veg-
etation conditions and post-fire effects beyond dNBR may
have also improved model performance in the Southeast.
Across the region, canopy cover can obscure surface fires
that lack crown scorch (Key and Benson 2006), and seasonal
flooding may weaken the relationship between dNBR and
burn severity (Malone et al. 2011; Salvia et al. 2012). In the
future, airborne or satellite lidar, for instance, could poten-
tially improve post-fire characterisation of changes in forest
structure (e.g. Huettermann et al. 2023). Model choice may
also be important. Although simpler statistical models (e.g.
regressions) can facilitate easier communication of a model
and its results to decision makers, these approaches may
have limited ability to distinguish between gradients of
severity so that machine-learning or deep-learning models
may be necessary to improve burn severity class separability
(Hultquist et al. 2014).

Cloud cover remains a challenge. In our effort, an annual
average of 7.3% of burned pixels were not assigned a burn
severity value owing to cloudy images limiting data availa-
bility in one or more of the imagery windows. Further, the
number of clear-sky images included in composites averaged
four in the Southeast compared with seven across CONUS.
However, no significant relationship between the number of
images and the absolute residual value was observed.
Regardless, incorporating datasets that provide a similar
spatial resolution but denser time series with improved
opportunities to detect and characterise burn severity prior
to recovery, like Sentinel-2 or the harmonised Landsat
Sentinel-2 (HLS) dataset (Vanderhoof et al. 2021; Howe
et al. 2022), is worth exploring, though modelling multi-
decadal patterns will still depend on the Landsat archive.

Ecological and land management implications

The patterns of burn severity identified in our analysis
reflect patterns of land use and natural vegetation as well
as emphasise the utility of our algorithm for natural
resource management. For example, prescribed fire corre-
sponded to lower burn severity estimates than wildfire.
Although this finding was expected because the application
of prescribed fire is designed in part to limit burn severity
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(Waldrop et al. 2012), the finding helps increase our confi-
dence in the burn severity dataset. In addition, our result
that woody wetlands showed a higher average burn severity
compared with non-wetland evergreen forests was consist-
ent with Malone et al. (2011), attributable in part to the
dominance of highly flammable evergreen shrubs in the
understorey of most forested wetlands in the region
(Sackett 1975; Behm et al. 2004) as well as the accumula-
tion of organic soils that can burn with high severity
(Mickler et al. 2017). The high flammability and rapid
regrowth of wetland understorey woody plants also likely
contributed to the bald cypress/water tupelo forest type
showing relatively high severity regardless of fire type and
a small increase in severity in response to increasing fire
frequency (Steel et al. 2015). Longleaf pine, in contrast,
showed the greatest convergence of burn severity between
prescribed and wildfires as fire frequency increased, attrib-
utable to the ecosystem’s grass and pine needle litter-
dominated fuels and mineral soils that burn with relatively
low intensity over a wide range of environmental conditions
(Burns 1983; Reid et al. 2012; Mitchell et al. 2014). Loblolly
pine and slash pine, the primary commercial tree species in
the region, similarly showed comparable burn severity
between prescribed and wildfires as fire frequency
increased, underscoring the importance of periodic pre-
scribed burning for protecting timber resources (Kobziar
et al. 2015; Mason and Lashley 2021).

A declining trend in burn severity was observed within
both wildfire and prescribed fire seasons. The finding was
somewhat surprising given continental predictions of
increasing wildfire hazard associated with climate change
(Gao et al. 2021). However, regional climate projections and
their implications for prescribed fire and wildfire are espe-
cially complex, with competing influences of higher

temperature, higher precipitation and more frequent
droughts and hurricanes (Mitchell et al. 2014; Kupfer et al.
2020). The observed trend may instead be related to more
recent patterns of drought and deluge, with extended
regional droughts in the first decade of the 21st century
(Pederson et al. 2012) and recent years (e.g. 2018-2022)
seeing wetter conditions than average (Abatzoglou et al
2018). Also, given that most fire in the region is prescribed,
these patterns may reflect decisions by prescribed fire prac-
titioners that compensate or override climatic patterns, as
shown by Nowell et al. (2018). Regardless, improved algo-
rithms for mapping trends in burn severity will prove essen-
tial in validating or challenging predicted regional trends of
burn severity in the context of global climate change.

Exploring model performance

Previous endeavours to model burn severity have developed
flexible frameworks (Parks et al. 2019; Picotte et al. 2020),
but the models have struggled across the Southeast
(Table 2). Similarly, although our model’s RMSE and MSE
were similar between the CONUS and the Southeast data, its
explanatory power within the Southeast was substantially
weaker, suggesting that predictive strength in the Southeast
may be lower than has been achieved for the western US.
One possible reason could be that prescribed fires in the
Southeast often occur during leaf-off (dormant season) peri-
ods and target consumption of understorey vegetation.
Lower pre-fire amounts of photosynthetic vegetation may
influence CBI measurements and pre- to post-fire changes in
spectral reflectance (Key and Benson 2006; Gallagher et al.
2020). However, we actually found that the Southeast had
lower mean absolute residuals in the dormant season rela-
tive to the growing season, and further, that the Southeast’s
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low and moderate burn severity plots showed lower mean
absolute residuals relative to outside the Southeast. This
demonstrated that our approach was not impacted by fire
timing. Lower residuals from dormant season burns may
reflect the more static condition of the post-burn environment
prior to spring green-up, whereas initiation of vegetation
recovery during the growing season is almost immediate.

Alternatively, the lower explanatory power of our model
in the Southeast may instead be attributable to the minimal
number of Southeast high-severity CBI plots (Gelman and
Hill 2007). High-severity points represented <5% of the
Southeast’s CBI plots (Fig. 3) and showed higher mean
absolute residuals relative to the non-Southeast (Table 3).
The inclusion of climate normals (i.e. PET and PR) improved
the CONUS-wide model performance in part by accounting
for regional differences in climate—fire regime feedbacks
(e.g. Wasserman and Mueller 2023). However, their inclu-
sion could also have caused an under-prediction or negative
bias of the region’s minority case (Maxwell et al. 2018).
Despite this source of uncertainty, utilising CONUS-wide
CBI plot data allowed us to compensate for the lower avail-
ability of CBI plot data in the Southeast, in particular high-
severity CBI plots, and enabled us to produce a scalable burn
severity model that can potentially be applied outside of the
region. Our modelling efforts can be used as a foundation for
other global fire-prone regions that face similar challenges
in characterising burn severity, but the transferability will
depend on how similar the fire regimes and vegetation are
to that represented by the CBI datasets.

Conclusion

Our scalable CBI model provides novel burn severity data
that are more inclusive of the many small and prescribed
fires across the Southeast compared with prior efforts. The
consistency between expected and observed burn severity
patterns suggests that our burn severity data can be success-
fully used for ecological and modelling applications. Trends
and patterns in burn severity between vegetation and by fire
types (e.g. prescribed versus wildfire) and fire frequency
have important implications for prioritising local land man-
agement actions, such as hazardous fuel reduction and pre-
scribed fire to manage wildfire risk (Kolden 2019), optimise
forestry practices and monitor fire-dependent habitat condi-
tion (Alba et al. 2015). This improved capacity to predict
burn severity in response to prescribed fire regimes, natural
community types and forestry practices will contribute to
improved estimates of atmospheric emissions (Jaffe et al.
2020; Kramer et al. 2023), residual carbon storage (Larkin
et al. 2014), impacts on natural resources and accomplish-
ment of ecological goals (Weiss et al. 2019). Future addition
of high-severity CBI data within the Southeast and incorpo-
ration of more frequent imagery from compatible moderate-
resolution satellite missions, like the HLS dataset, will

further improve our capacity to map burn severity in the
region.

Supplementary material

Supplementary material is available online.
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