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ABSTRACT 

Background. The southeastern United States (‘Southeast’) experiences high levels of fire activity, 
but the preponderance of small and prescribed fires means that existing burn severity products 
are incomplete across the region. Aims. We developed and applied a burn severity model across 
the Southeast to enhance our understanding of regional burn severity patterns. Methods. We 
used Composite Burn Index (CBI) plot data from across the conterminous US (CONUS) to train a 
gradient-boosted decision tree model. The model was optimised for the Southeast and applied 
to the annual Landsat Burned Area product for 2000–2022 across the region. Key results. The 
burn severity model had a root mean square error (RMSE) of 0.48 (R2 = 0.70) and 0.50 (R2 = 0.37) 
for the CONUS and Southeast, respectively. The Southeast, relative to CONUS, had lower mean 
absolute residuals in low and moderate burn severity categories. Burn severity was consistently 
lower in areas affected by prescribed burns relative to wildfires. Conclusions. Although regional 
performance was limited by a lack of high burn severity CBI plots, the burn severity dataset 
demonstrated patterns consistent with low-severity, frequent fire regimes characteristic of 
Southeastern ecosystems. Implications. More complete data on burn severity will enhance 
regional management of fire-dependent ecosystems and improve estimates of fuels and fire 
emissions.  

Keywords: burn severity, burned area, Composite Burn Index, CBI, differenced Normalized Burn 
Ratio, dNBR, Landsat, longleaf pine, Monitoring Trends in Burn Severity, MTBS, post-fire, 
prescribed fire, Southeast US, wildfire, wildland fire. 

Introduction 

Wildland fires, both prescribed burns and wildfires, alter ecosystem conditions and 
processes (Bowman et al. 2009; Franklin et al. 2016), with the amount of change 
reflected by burn severity (Meng and Zhao 2017). Satellite imagery has been widely 
used to develop operational burned area products (Randerson et al. 2017; van der Werf 
et al. 2017; Humber et al. 2018; Hawbaker et al. 2020a) and to monitor burn severity 
(Meng and Zhao 2017; Miller et al. 2023). Within the United States, the southeastern US 
(‘Southeast’) experiences the largest number of wildland fire ignitions (Randerson et al. 
2017; Short 2022), the greatest occurrence of wildfire in the wildland–urban interface 
(WUI) (Thomas and Butry 2014; Radeloff et al. 2023) and the most active application of 
prescribed fire (Nowell et al. 2018; Kolden 2019; Melvin 2020). However, the great 
majority of fires are small, and most are prescribed, making them challenging to detect 
remotely owing to their limited extent and relatively low severity. Therefore, efforts to 
track regional burned areas and burn severity are underdeveloped (Picotte et al. 2020;  
Hawbaker et al. 2020a; Teske et al. 2021). Improving regional characterisation of burn 
severity, quantified as the degree of loss of aboveground and soil organic matter and the 
corresponding change in spectral reflectance (Keeley 2009), is important to improve 
estimates of emissions (Larkin et al. 2014), fuel loads (Boisramé et al. 2022), wildfire risk 
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(Kolden 2019) and impacts to natural resources (Weiss et al. 
2019), as well as to inform invasive plant management 
(Alba et al. 2015). 

Southeastern forests, savannas and grasslands have a long 
history of fire, with Indigenous people maintaining a frequent 
fire regime prior to colonisation (Fowler and Konopik 2007;  
Ryan et al. 2013). European settlers burned to encourage 
grasses for cattle grazing, and since the 1800s, to manage 
for northern bobwhite ‘quail’ (Colinus virginanus) (Johnson 
and Hale 2002). In more recent decades, burning on both 
public and private lands is also applied to benefit timber 
production, reduce hazardous fuel loads, restore ecosystems 
and enhance wildlife habitat (Addington et al. 2015; Kobziar 
et al. 2015; Mason and Lashley 2021). The smaller size of 
Southeast fires, relative to the western US, is typically attrib
uted to constraints on the application of prescribed fire and 
landscape fragmentation into smaller parcels (Kobziar et al. 
2015), which limits the spread of accidental and lightning- 
ignited fires (Johnson and Hale 2002). As burn severity gen
erally increases with time since fire and associated fuel accu
mulation (Godwin and Kobziar 2011; Malone et al. 2011), 
land managers aim to apply prescribed fire intervals that are 
as short as feasible to preclude higher-severity wildfires 
(Johnson and Hale 2002; Kobziar et al. 2015). Remotely 
tracking burned area and severity from these small, low- 
intensity fires is challenging, exacerbated by high annual 
precipitation and frequent summer afternoon thunderstorms 
that result in regular cloud cover, reducing the frequency of 
clear images (Picotte and Robertson 2011a; Vanderhoof et al. 
2021). Additionally, most of the fire-dependent communities 
in the region are characterised by rapid rates of regrowth from 
perennial vegetation that survives fire, shortening image 
selection windows and making accurate field data collection 
difficult (Godwin and Kobziar 2011; Malone et al. 2011). 

The remote characterisation of burn severity has com
monly relied on the Normalized Burn Ratio (NBR) spectral 
index or the differenced NBR (dNBR) index mapped from 
pre- and post-fire NBR images (Picotte et al. 2021; Miller 
et al. 2023). Although widely used, dNBR depends in part on 
the amount and type of pre-fire vegetation (Zhu et al. 2006). 
Consequently, other burn severity indices, including the 
relative dNBR (RdNBR; Miller et al. 2009) and the relati
vised burn ratio (RBR; Parks et al. 2014), have emerged to 
help control for the effects of pre-fire vegetation. These are 
particularly helpful in unforested areas where NBR can 
respond more to soil wetness than plant coverage (Malone 
et al. 2011; Salvia et al. 2012). A lack of consensus for a 
preferred spectral index (Whitman et al. 2020; Howe et al. 
2022; Saberi and Harvey 2023) has resulted in burn severity 
products often providing multiple indices or reporting a 
categorical severity value. Burn severity is most comprehen
sively mapped by (1) the MOSEV global burn severity data
base and a global Landsat forest burn severity (He et al. 
2024), both of which attribute burn severity for the 
Moderate Resolution Imaging Spectroradiometer (MODIS) 

burned area product (MCD64A1; Alonso-González and 
Fernández-García 2021), (2) the Monitoring Trends in 
Burn Severity (MTBS) product (Eidenshink et al. 2007), 
which maps fires >400 hectares in the western US and 
>200 hectares in the eastern US from Landsat products 
(Picotte et al. 2020), and (3) Burned Area Emergency 
Response (BAER) and Rapid Assessment of Vegetation 
Condition (RAVG) assessments, which both map burn sever
ity on federal forestlands (Hudak et al. 2007). Collectively, 
these efforts produce consistent burn severity maps for large 
wildfires across the US and most fires on federal land. 
However, they do not map burn severity for small wildfires, 
most prescribed fires and many fires on private lands, com
plicating efforts to track complete patterns of burned area 
and severity over time. 

Ecological interpretation of remotely sensed burn sever
ity estimates commonly relies on Composite Burn Index 
(CBI) field plots (Key and Benson 2006). CBI assesses dam
age to substrates and above-ground biomass using a contin
uous index with values ranging from 0.0 (unburned) to 3.0 
(high severity). The statistical relationships between CBI 
and NBR or dNBR tend to reflect post-fire vegetation condi
tion more than soil condition (Hudak et al. 2007). CBI plots 
have been effectively related to dNBR across the western 
and conterminous US (CONUS) using correlation (He et al. 
2024), multiple regression approaches including polynomial 
regression models (Zhu et al. 2006), sigmoidal regression 
models (Lutz et al. 2011; Picotte et al. 2021) and non-linear 
least squares regression models (Howe et al. 2022), as well 
as multi-variable random forest models (Parks et al. 2019). 
Even so, obtaining adequate accuracy across the Southeast 
remains challenging. For example, although the model of  
Parks et al. (2019) showed a strong explanatory power 
across CONUS, the accuracy for Florida, where most of the 
model’s Southeast training points were located, was poor. 
Studies focusing on selected, common natural community 
types in Florida and Georgia have successfully related CBI 
with NBR and dNBR (e.g. Godwin and Kobziar 2011; Picotte 
and Robertson 2011b); however, they have not been vali
dated for broader geographic application. 

Improving our characterisation of burn severity across 
the Southeast will provide data useful to monitor silvicul
ture and ecosystem condition and support prescribed fire 
and ecosystem restoration (Larkin et al. 2014; Weiss et al. 
2019; Jaffe et al. 2020). Here, we built on localised efforts 
within the Southeast (e.g. Godwin and Kobziar 2011;  
Malone et al. 2011; Picotte and Robertson 2011b) to 
improve our capacity to map burn severity at landscape 
scales across the region. We used CBI plot data compiled 
across CONUS (Picotte et al. 2019) to develop a machine 
learning model that includes spectral indices from multiple 
windows to map burn severity. The model was applied to all 
burned areas across the Southeast (2000–2022) mapped by 
the US Geological Survey’s Landsat Burned Area (BA) prod
uct, which identifies burned area >2 ha, regardless of fire 
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type (wildfire or prescribed) or land ownership (Hawbaker 
et al. 2020a). Focusing on forested areas identified as 
burned by the BA product, we sought to characterise pat
terns and trends in burn severity across the region. Our 
research questions included:  

1. Can we improve on efforts to map burn severity in the 
Southeast?  

2. How do vegetation and forest type influence burn severity?  
3. Are there annual trends in average burn severity over the 

study period?  
4. Is burn severity influenced by fire history (i.e. recent fire 

frequency) and fire type (i.e. prescribed or wildfire)? 

Methods 

Study area 

Our study area extends across most of the Southeast, includ
ing the entirety of Florida, Georgia, South Carolina, North 
Carolina, Alabama, Mississippi, Louisiana, and parts of Texas, 
Kentucky, Tennessee, Arkansas and Virginia (Fig. 1). The 

extent was defined by the Southeast FireMap project (Tall 
Timbers 2024), which in turn was based on the historical 
distribution of longleaf pine (Pinus palustris), a native pine 
species that is highly dependent on fire and the focus of 
conservation and restoration efforts across its extent 
(Barnett 1999). Much of this region is part of the Southeast 
Plains and Coastal Plains ecoregions (Omernik and Griffith 
2014), notable as global biodiversity hotspots (Noss et al. 
2015) and a significant producer of forest products 
(Howard and Liang 2019). Land cover is dominated by forests 
(34%), woody wetlands (14%), agriculture (22%) and devel
oped areas (10%) (Homer et al. 2020). Forested systems most 
commonly include pine plantations, unmanaged closed- 
canopy broadleaf forests in uplands or wetlands, and open- 
canopy forests, woodlands and savannas. On the modern 
landscape, dominant tree species include loblolly pine 
(P. taeda L.), shortleaf pine (P. echinata Mill.), longleaf 
pine, slash pine (P. elliottii Engelm.), and many species of 
oak (Quercus spp.) and other broadleaf deciduous tree species 
(Ruefenacht et al. 2008). Annual precipitation across the 
region averages 1324 mm, while annually the maximum 
and minimum temperature averages 24.4 and 12.0°C, respec
tively (1990–2020; Abatzoglou 2013). 
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Fig. 1. Study area extent in relation to burn frequency or burn count, derived from the Landsat Burned Area product 
at an annual time step (1984–2022). Longer time range provided to reflect long-term geographic differences in burn 
frequency.   
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CBI training data 

We used CBI plot data collected across the CONUS for model 
training and validation, while targeting performance 
improvements in the Southeast. Utilising the CONUS-wide 
burned CBI plots, relative to the Southeast alone, provided 
training data across more geographically diverse fire events, 
represented greater variability in burn severity and added 
more high burn severity training data for use in our 
Southeast-focused application. The CBI data included 5532 
plots from multiple independent projects or field campaigns 
following 232 fire events occurring between 1996 and 2018 
compiled by Picotte et al. (2019). These data were supple
mented with an additional 276 CBI plots from 23 fires 
collected in 2017 and 2018 across Arizona and New 
Mexico (Reiner et al. 2022), for a total of 5808 forested 
burned CBI plots, including 904 prescribed and wildfire 
burned CBI plots across the Southeast (Fig. 2a). A total of 
438 (7.5%) CBI plots were removed during data checks if 
they did not have a recorded fire date (n = 26), had notably 
erroneous plot locations (n = 15), or occurred in grasslands 
or agriculture fields as determined using high-resolution 
aerial imagery (n = 264). We also excluded plots if field 
measurement occurred more than 1 year post-fire in sub
tropical regions, defined here as Florida, owing to rapid 

revegetation obscuring post-fire effects (n = 133) (Key 
and Benson 2006). Unburned CBI plot data were excluded 
as well because sampling was inconsistent across the data
sets. Instead, a stratified sampling approach was employed 
to generate 552 unburned (i.e. CBI = 0) pseudo-plots pro
portional to approximately 10% of the CBI plots collected 
for each individual fire event. We generated randomly dis
tributed pseudo-plots within 500 m–1 km of collected field 
plots, excluding areas mapped as burned by the Landsat BA 
product. To control for spectral outlier values, pseudo- 
absence plots with dNBR values below the 2.5th and 
above the 97.5th percentile were also removed. CBI plots 
were excluded from model development if insufficient imag
ery, as described in the ‘Landsat image selection and pre- 
processing’ section, was available to generate all spectral 
predictor layers. These exclusions left 5038 burned field 
plots and 495 unburned pseudo-plots (total = 5533) across 
CONUS that were used in model development (Fig. 2). 
Within the Southeast, plots included 598 burned field 
plots and 57 unburned pseudo-plots, representing 11.8% 
of the CBI plots. CBI median ± s.d. was 1.64 ± 0.77 across 
CONUS compared with 1.49 ± 0.53 across the Southeast, 
and while 991 plots across CONUS had a CBI of >2.5, only 
34 occurred within the Southeast. 
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Fig. 2. (a) Locations of Composite Burn Index (CBI) field plots used to develop the burn severity model; (b) histograms of plot counts by 
CBI value for CBI values >0 across the conterminous US; and (c) within the Southeast study area; and (d) pre-fire and post-fire image 
selection approach where, for each spectral variable, the (1) initial assessment, (2) extended assessment, (3) initial post-fire image, and (4) 
extended post-fire image values were considered as potential model variables. NBR, Normalized Burn Ratio.   
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Landsat image selection and pre-processing 

We attributed the CBI plot data using Landsat Surface 
Reflectance 5–8 Collection 2 imagery. Cloud, cloud shadow, 
open water and snow pixels were masked using the Function 
of Mask (FMask; Zhu and Woodcock 2014). To determine 
suitable model predictors, we considered the spectral bands: 
red, NIR (near infrared), SWIR1 (shortwave infrared) and 
SWIR2, as well as spectral indices that have previously been 
shown to be helpful in evaluating fire effects and post-fire 
vegetation conditions (Table 1). For each spectral index and 
band, we calculated (1) initial post-fire assessment from pre- 
and post-fire imagery, (2) extended post-fire assessment 
from pre- and post-fire imagery, (3) initial post-fire image, 
and (4) extended post-fire image values (Fig. 2d). Initial 
assessments evaluated same-season post-fire imagery to 
reflect immediate, first-order fire impacts, whereas extended 
assessments evaluated imagery the following year to 
account for delayed mortality and survivorship (Key and 
Benson 2006). We calculated initial assessments with a 
post-fire Landsat scene that was uniquely selected for each 
burned pixel by identifying the date of lowest NBR (i.e. 
highest severity) in the 2-month period following fire detec
tion. Previous research in the region has determined that 
burn severity assessment should be conducted within 
2 months following a fire to account for rapid post-fire 
regrowth of top-killed vegetation that can obscure spectral 
signatures and reduce model performance (Picotte and 
Robertson 2011a). Extended assessments were measured 
using a post-fire composite image, generated from the 
median pixel value 1-year post-fire (Busby et al. 2023). 
Pre-fire images were generated from 2-month median 
image composites 1 year pre-fire for initial assessments 
and immediately preceding the fire event for extended 
assessments (Fig. 2d). Although minimal differences have 
been found between using paired images (one pre- and post- 
fire image) versus image composites, compositing, or aver
aging across multiple images, can be more easily automated 
(Whitman et al. 2020; Saberi and Harvey 2023). When 
differencing pre- and post-fire imagery, an offset value 
differencing the imagery within unburned vegetation can 
help account for phenological differences between pre- and 
post-fire image dates (Miller and Thode 2007; Miller et al. 
2009). After testing the application of automated offset 
values representing a range of unburned buffers from 
100 m to a Landsat Analysis Ready Data (ARD) tile, we 
found that applying offset values showed no improvement 
in model performance, similarly to Picotte and Robertson 
(2011b), and they were therefore not used in model devel
opment or application. 

Long-term climate patterns help determine fire regimes, 
in part owing to their influence on vegetation type and 
condition (Liu and Wimberly 2015). Therefore, we also 
considered the normal (1990–2019) annual (1) precipitation 
(PR), (2) potential evapotranspiration (PET), and (3) aridity 

index (AI; PET/PR) derived from TerraClimate (~4 km;  
Abatzoglou et al. 2018) as potential covariates in the 
model. As fuel loads are seasonally dependent, fire season
ality was also considered where the fire day of year (DOY), 
as reported in the CBI metadata, was binned into winter 
(DOY 335–59), spring (DOY 60–151), summer (DOY 
152–243) and fall (DOY 244–334). A complete list of the 
variables considered is shown in Table 1. 

Model development 

CBI plots of burn severity were modelled as a function of 
Landsat-derived variables, including spectral indices calcu
lated from post-fire, initial and extended assessment win
dows, as well as long-term climate variables. We used the 
eXtreme Gradient Boosting model, XGBoost (Chen and 
Guestrin 2016), a machine learning algorithm that uses a 
gradient boosting decision tree framework with regularisa
tion processes to avoid overfitting and improve generalisa
bility. During model fitting, we evaluated 432 unique 
hyperparameter combinations (selected hyperparameters 
are shown in bold), including number of trees [300, 500, 
700], maximum tree depth [0, 3, 5], minimum child weight 
[3, 5, 7, 10], learning rate [0.01, 0.05, 0.10, 0.30], gamma 
[0.0, 0.2, 0.4], and subsampled data splits [0.8]. Including 
highly correlated covariates in decision tree models can bias 
model predictions and deflate variable importance, making 
models difficult to interpret (Murphy et al. 2010; Dormann 
et al. 2013). Therefore, we used a stepwise forward selection 
routine to concurrently identify the optimal set of hyper
parameters and predictors (Sherrouse and Hawbaker 2023). 
For each hyperparameter combination, predictors were 
sequentially tested and selected for inclusion based on 
which predictors minimised model root mean square error 
(RMSE). During each step, remaining predictors were 
removed if they were highly correlated (R > 0.70) with 
any of the selected predictors. This process was repeated 
until the improvement in the model’s RMSE was <1.0% 
with any additional variables. The iterative predictor selec
tion process was performed using grouped five-fold cross 
validation across all model hyperparameter combinations to 
identify the best-performing model that minimised RMSE. 
To evaluate model performance (e.g. R2 and mean square 
error (MSE)), we used grouped k-fold cross-validation (e.g.  
Gallagher et al. 2020). The entire dataset was divided into 
five folds and grouped by fire event to avoid training and 
testing on the same fire. The model was trained on all folds 
except one and evaluated on the remaining fold in each 
iteration. Model performance was averaged across the five 
iterations. Variable permutation importance was calculated 
by permuting features 100 times to evaluate model variable 
importance for both CONUS and the Southeast. Permutation 
importance provides a more robust assessment of each vari
able’s contribution to model predictions by evaluating per
formance on a test set, while randomly shuffling individual 
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Table 1. Spectral and environmental variables considered for inclusion as model predictors.        

Predictor type Time frame Name Abbreviation Definition Reference   

Landsat Bands Initial assessment Red Red Landsat TM/ETM + Band 3, OLI Band 4 – 

Extended assessment Near infrared NIR Landsat TM/ETM + Band 4, OLI Band 5 – 

Initial post-fire image Shortwave infrared 1 SWIR1 Landsat TM/ETM + Band 5, OLI Band 6 – 

Extended post-fire 
image 

Shortwave infrared 2 SWIR2 Landsat TM/ETM + Band 7, OLI Band 7 – 

Spectral 
indices 

Initial assessment Normalized Burn Ratio NBR NIR – SWIR2/NIR + SWIR2  García and Caselles (1991),   
Key and Benson (2006) 

Extended assessment Normalized Burn Ratio 2 NBR2 SWIR1 – SWIR2/SWIR1 + SWIR2  García and Caselles (1991),   
Key and Benson (2006) 

Initial post-fire image Normalized Burn Ratio 
Thermal 

NBRT (NIR − (SWIR2 × Thermal))/(NIR + (SWIR2 × Thermal))  Holden et al. (2005) 

Extended post-fire 
image 

Normalized Difference 
Vegetation Index 

NDVI NIR – Red/NIR + Red  Tucker (1979) 

Normalized Differenced 
Moisture Index 

NDMI NIR – SWIR1/NIR + SWIR1  Gao (1996) 

Enhanced Vegetation Index EVI 2.5 × (NIR − Red)/(NIR + (6.0 × Red) − (7.5 × Blue) + 1.0)  Huete et al. (2002) 

Soil Adjusted Vegetation 
Index 

SAVI 1.5 × (NIR−Red)/(NIR + Red + 0.5)  Huete (1988) 

Burned Area Index BAI 1/((0.1 − Red)2 + (0.06 − NIR)2)  Chuvieco et al. (2002) 

Char Soil Index CSI NIR/SWIR2  Smith et al. (2007) 

Global Environmental 
Monitoring Index 

GEMI η × (1.0–0.25 × η) − ((Red − 0.125)/(1 − Red)); 
η = (2 × (NIR2 − Red2) + (1.5 × NIR) + (0.5 × Red))/(NIR + Red + 0.5)  

Pinty and 
Verstraete (1992) 

Mid InfraRed Burn Index MIRBI (10.0 × SWIR2) − (9.8 × SWIR1) + 2.0  Trigg and Flasse (2001) 

NIR-red ratio VI43 NIR/Red  Tucker (1979) 

NIR-SWIR1 ratio VI45 NIR/SWIR1  Epting et al. (2005) 

SWIR1-SWIR2 ratio VI57 SWIR1/SWIR2  Epting et al. (2005) 

Climate 30-year (1990–2019) 
Normalized 
annual mean 

Potential evapotranspiration PET –  Abatzoglou et al. (2018) 

Precipitation PR –  Abatzoglou et al. (2018) 

Aridity index AI PET/PR  Abatzoglou et al. (2018) 

Season Season of fire event Fire season Fire season Burn date in day of year 335–359 (winter), 60–151 (spring), 152–243 (summer), 
244–334 (fall (autumn)) 

– 

TM, Thematic Mapper; ETM+, Enhanced Thematic Mapper Plus; OLI, Operational Land Imager.  
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features to better reflect model generalisability and predic
tive power. Variables that show a greater decrease in accu
racy score on exclusion indicate higher importance to model 
prediction. 

CBI model application to the Landsat BA product 

The gradient boosted decision tree model was applied to 
pixels that were already identified as burned using the 
Landsat BA product (30-m resolution; 1984–present;  
Hawbaker et al. 2020a, 2020b), which operationally maps 
burned area extent for Landsat Collection 2 imagery across 
CONUS with <80% cloud cover. Both wildfires and pre
scribed fires >2 ha are mapped, but fire type is not distin
guished. Validated with commercial, high-resolution 
imagery, the Landsat BA product showed an omission (i.e. 
false negative) and commission (i.e. false positive) error of 
19 and 41% for CONUS, and 45 and 37% for the eastern US, 
respectively (Hawbaker et al. 2020a). Although the Landsat 
BA product maps more burned area in the Southeast com
pared with other burned area products such as MTBS or 
MODIS MCD64A1 (Hawbaker et al. 2020a), we acknowl
edge that the product still under-maps low-severity pre
scribed fire (Teske et al. 2021; Vanderhoof et al. 2021). 
Sources of error intrinsic to the image collection, such as 
poor or uneven atmospheric conditions, residual clouds or 
cloud shadows, or surface reflectance conversion errors, can 
introduce higher-than-expected rates of commission error in 
a minority of images. Consequently, all classified images 
were visually reviewed and problematic images were 
removed (1.4% of classified images) prior to creating annual 
composites from the time series (Hawbaker et al. 2020b). 

We applied the burn severity model to the annual suite of 
Landsat BA products (2000–2022) across 76 Landsat ARD 
tiles (~150  × 150 km each). The fire date was defined 
using the annual burn date raster, which represents the day 
of year (1–366) of the first Landsat scene in which a burned 
area was observed. Consequently, if a pixel burned more 
than once in a year, burn severity would be calculated for 
the first fire event only. The percentage of burned pixels that 
lacked one or more clear-sky observations representing 
either pre- or post-fire conditions was substantially greater 
prior to 2000; therefore, the burn severity model was 
applied to the annual Landsat BA products for 2000–2022. 
Each unique burn date was used to identify corresponding 
2-month windows for the 1-year pre- and post-fire dates and 
immediate pre- and post-fire dates (Fig. 2d). The pixel burn 
date was also applied to attribute fire seasonality, using the 
burn date DOY as defined in the ‘Landsat image selection 
and pre-processing’ section. The generated predictor stack 
for each unique burn date was used to predict CBI values 
from the trained model. CBI values were not predicted for 
pixels that lacked predictor imagery (average of 7.3% of 
burned area annually, ranging from 3% in 2004 to 24% in 
2013) owing to extensive cloud cover or other image quality 

constraints. Pixels predicted to have a CBI < 0 were a 
minority case (<0.0001% of pixels) and were reclassified 
as CBI = 0.001. 

Burn severity patterns 

To evaluate spatial and temporal patterns in burn severity, 
we randomly generated 50,000 points per year (2000–2022) 
across our mapped burn severity. The points were limited to 
non-grassland and non-agriculture Southeast burned area 
(n = 1,150,000), and herein are referred to as the sampled 
predicted CBI points. Fire activity within grassland and 
agricultural areas was assumed to either result in the near- 
complete combustion of vegetation or represent a highly 
managed land use and was therefore excluded from the 
analysis. Agriculture and grassland extent was defined as 
herbaceous, pasture/hay and cultivated crop cover type, as 
mapped by the National Land Cover Database (NLCD;  
Homer et al. 2020) using the nearest NLCD year (2001, 
2006, 2011, 2016, 2019, 2021). Sampled predicted CBI 
points were selected to be a minimum of 200 m from one 
another to minimise the influence of spatial autocorrelation 
in the analysis of burn severity. 

Patterns in burn severity were summarised by forest type 
(Ruefenacht et al. 2008), land cover using nearest year 
NLCD (Homer et al. 2020) and public–private land owner
ship (PAD-US 3.0; US Geological Survey (USGS) 2022). 
Forest types that represented >2% of the burned area 
were reported. As the MTBS dataset (Eidenshink et al. 
2007) is the most comparable burn severity dataset, MTBS 
burn severity was visually compared with the model- 
predicted burn severity. Burn severity within MTBS is cate
gorical and low severity is assigned as the default value in 
herbaceous vegetation types (Picotte et al. 2020). Therefore, 
comparisons with MTBS were restricted to burned areas 
dominated by forest, shrub, or woody wetland vegetation 
types as defined by NLCD. 

We limited our evaluation of temporal trends in burn 
severity to forested land cover, where most fires in the 
region occur, defined using the nearest year NLCD. We 
used the non-parametric Mann–Kendall test for significant 
temporal trends. Trends in forest burn severity were sepa
rated into months in which prescribed fire dominates 
(December–April; Cummins et al. 2023) and months in 
which wildfire dominates (May–November; Slocum et al. 
2007; Donovan et al. 2023), recognising the co-occurrence 
of both fire types within a given month is common. 
Additionally, as burn severity is influenced by meteorologi
cal conditions (Parks and Abatzoglou 2020), we correlated 
the sampled predicted CBI points to annual average Palmer 
Drought Severity Index (PDSI). As the Mann–Kendall test is 
most commonly utilised for trend analysis, we applied the 
non-parametric Spearman Rank-Order Correlation. Monthly 
PDSI was derived from TerraClimate (4 km), where increas
ing positive values represent wetter conditions and 
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decreasing negative values represent drier conditions 
(Abatzoglou et al. 2018). 

Differences in burn severity attributable to fire type (pre
scribed fire versus wildfire) were further explored by com
piling burn polygons attributed with burn type across the 
Southeast. Sources of attributed burned area included the 
(1) LANDFIRE Public Events Geodatabase (LANDFIRE 
2022), (2) the Southeastern US Prescribed Fire Permit 
Database (Cummins et al. 2023), and (3) the Fire Program 
Analysis fire-occurrence database (FPA FOD) (Short 2022). 
Attributed burned area was required to be colocated with an 
area mapped as burned by the Landsat BA product in the 
same year while occurring within a forested NLCD land 
cover type. The FPA FOD and southeastern US Prescribed 
Fire Permit Database are points datasets. These points were 
limited to those with a burn type attributed as wildfire (e.g. 
incendiary, arson, or wildfire) or prescribed burn (e.g. 
broadcast burn, prescribed burn, or hazardous fuel reduc
tion). Points were excluded for alternative burn types, 
including burn piles. Points with over 25 records for the 
same coordinates were also excluded as this suggested that, 
even after accounting for the possibility of consecutive day 
permit requests, a non-specific location (e.g. a county cen
troid) was likely reported. Remaining points were converted 
to an attributed polygon extent, reflecting the corresponding 
polygon record from the Landsat BA product, and compiled 
with the LANDFIRE attributed polygons. 

We limited the sampled predicted CBI points 
(n = 1,150,000) to those overlapping the forested burned 
area attributed as prescribed (n = 183,831) or wildfire 
(n = 88,826) (Supplementary Fig. S1). To test the influence 
of fire type on burn severity, differences in CBI burn severity 
between prescribed and wildfire were evaluated by forest 
type (Ruefenacht et al. 2008). To test the expectation that 
more frequent fires may reduce burn severity (Hunter and 
Robles 2020), we categorised burn frequency or burn count 
(2000–2022) as (1) 1 fire, (2) 2–3 fires, and (3) 4+ fires 
(Vanderhoof et al. 2022). Significant differences in CBI 
values were determined using the non-parametric Welch 
Satterthwaite t-test. 

Results 

Model performance 

The selected model had an RMSE of 0.48, an MSE of 0.23 
and an R2 of 0.70 for CBI predictions across CONUS. Model 
performance was similar but slightly weaker within the 
Southeast alone, with an RMSE of 0.50 and MSE of 0.26; 
however, the explanatory power was weaker relative to 
CONUS, with an R2 of 0.37 (Table 2, Fig. 3). Despite the 
lower explanatory power, when residuals were compared by 
burn severity category, the Southeast had a lower mean 
absolute residual for observed low (residuals = 0.31 

compared with 0.38, respectively) and moderate (resi
duals = 0.34 compared with 0.37, respectively) burn severity 
relative to the non-Southeast (Table 3). For the non- 
Southeast, in contrast, high burn severity showed the lowest 
absolute residuals of any severity class, 0.32, and much lower 
absolute residuals than high-severity plots in the Southeast 
(residuals = 0.84) (Table 3). In comparing residual values in 
the growing season relative to the dormant season, the non- 
Southeast had a lower mean absolute residual in the growing 
season relative to the Southeast, but within the Southeast, the 
dormant season,relative to the growing season had a lower 
mean absolute residual, suggesting that burn severity predic
tions in the Southeast were not impacted by dormant season 
conditions (Table 3). 

The lower explanatory power in the Southeast was partly a 
consequence of a smaller range of variability in CBI compared 
with CONUS (Fig. 2c). Outside the Southeast, CBI ≥ 2.5 and 
CBI ≥ 2.7 comprised 18 and 11% of the CBI plots, respec
tively. In comparison, within the Southeast, CBI ≥ 2.5 and 
CBI ≥ 2.7 comprised 3 and 0.5% of the CBI plots, respec
tively. R2 values are influenced by the range of variability in 
the response variable. To demonstrate this effect, we ran
domly sampled non-Southeast CBI plots ≥2.7 at a 25% 
sampling rate (n = 134) to artificially increase the propor
tion of high-severity plots, as defined in Table 3, to 50% of 
the region’s moderate-burn severity plot count. Including 
these high-severity non-Southeast plots, the explanatory 
power increased from R2 = 0.37 to R2 = 0.62. 

The selected predictors included two extended assess
ment variables, dNBR and dSWIR1 (differenced shortwave 
infrared 1), two initial assessment variables, dBAI 
(differenced Burned Area Index) and dNBR2, an extended 
post-fire image variable, vi57 (SWIR1/SWIR2 ratio), as well 
as the fire season, and normal annual PET and PR (Table 1,  
Fig. 4). Permutation importance calculations showed that all 
variables had a significant (P < 0.01) influence on model 
performance, with a positive decrease in accuracy scores for 
all calculated iterations. For CONUS, the dNBR extended 

Table 2. Composite Burn Index (CBI) model performance (shaded 
grey) relative to previously published national CBI modelling efforts.      

Geographic extent R2 RMSE Source   

CONUS  0.70  0.48 Modelled results 

CONUS  0.58  0.58  Picotte et al. (2021) 

CONUS  0.72  0.47  Parks et al. (2019) 

Southeast  0.37  0.50 Modelled results 

Southeast  0.18  0.69  Picotte et al. 2021 

Florida  0.01  0.53  Parks et al. (2019) 

North Carolina  <0.01  0.57  Parks et al. (2019) 

The Southeast results were calculated from the CBI observations within our 
study area. Results for states located entirely within the study area are 
presented for  Parks et al. (2019). CONUS, conterminous United States.  
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assessment showed the greatest variable permutation impor
tance, followed by the vi57 extended post-fire image 
(Fig. 4), reflecting the influence of delayed mortality in 
western forest fires. In contrast, the Southeast model 
depended most strongly on the dNBR extended assessment 

and the dBAI and dNBR2 initial assessments, indicating a 
greater regional importance of initial assessment variables 
(Fig. 4). Although climate and fire season variables were 
selected for inclusion, they showed lower variable impor
tance, such that the coarser native spatial resolution of these 
variables was not visually evident in the mapped burn 
severity. An example of how the CBI plots translated to 
MTBS and modelled CBI burn severity is shown in 
Supplementary Fig. S2. 

Spatial patterns of burn severity 

The Landsat BA product mapped a total of 171,350 km2 of 
burned area (median of 7147 km2 burned per year) across 
the Southeast from 2000 to 2022. Although CBI burn sever
ity was variable within individual fires, low to moderate 
burn severity dominated across the region (Fig. 5). Burn 
severity was mapped for many wildfires and prescribed 
fires that were too small to be mapped by other programs 
such as MTBS or MOSEV. Examples of differences between 
the Landsat BA product and MTBS in mapped burned area 
extent and corresponding burn severity are shown in Fig. 6, 
which shows prescribed burns within Fort Stewart’s Back 
Gate (Fig. 6a), the Apalachicola National Forest (Fig. 6b) 
and tree plantations on private land (Fig. 6c). Fig. 7 repre
sents our general observation that where a fire is mapped by 
both datasets, the CBI burn severity and MTBS appear to be 
detecting similar underlying patterns in burn severity, in 
part reflecting overlap in the indices used. 

Average burn severity was greatest in emergent herba
ceous wetlands (CBI = 1.39) and woody wetlands 
(CBI = 1.31), and lowest in deciduous forest (CBI = 1.00) 
(Table 4). Within forest types, average burn severity was 
highest in bald cypress and water tupelo forests 
(CBI = 1.38). Within pine forest types, slash pine showed 
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Fig. 3. Comparison of field-observed CBI (Composite Burn Index) values with model-predicted CBI values for (a) all 
continental US plots, and (b) southeastern US plots. Point density is depicted by hexagonal bins, with colours indicating 
the concentration of points per bin. Dashed red line represents the 1:1 identity line, solid black line represents the line of 
linear regression between the observed and predicted values.   

Table 3. Differences in mean absolute residuals across the Southeast 
compared with outside of the Southeast by burn severity class derived 
from the observed Composite Burn Index (CBI) (low: ≤1.25, moderate: 
>1.25 and ≤2.25) and season (dormant: 15 November–28 February, 
growing: 1 March–14 November). s.d., standard deviation.      

Burn severity 
class 

Region Mean absolute 
residual (s.d.) 

Count   

Unburned Southeast 0.67 (0.355) 57 

Unburned Non- 
Southeast 

0.48 (0.403) 438 

Low Southeast 0.31 (0.235) 228 

Low Non- 
Southeast 

0.38 (0.285) 1543 

Moderate Southeast 0.34 (0.267) 336 

Moderate Non- 
Southeast 

0.37 (0.294) 1577 

High Southeast 0.84 (0.395) 34 

High Non- 
Southeast 

0.32 (0.287) 1320      

Season Region Mean absolute 
residual (s.d.) 

Count   

Dormant Southeast 0.34 (0.261) 155 

Dormant Non-Southeast 0.51 (0.375) 75 

Growing Southeast 0.40 (0.321) 500 

Growing Non-Southeast 0.37 (0.302) 4803   
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the highest burn severity (CBI = 1.32), and loblolly pine the 
lowest (CBI = 1.11) (Table 4). Public land comprised only 
10.9% of the study area but showed a higher median CBI 
than private burning, 1.23 relative to 1.18, respectively, and 
contributed 37.6% of the total area burned (Table 4). 

Temporal trends in burn severity 

Over the 23 years analysed for this study, we observed a 
significant (P < 0.001) decline in average mapped CBI burn 
severity (Fig. 8a). This decline was evident in months in 
which prescribed fire dominates (December–May) as well as 
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Fig. 4. Variable permutation importance for the 
best-performing model. All variables showed a 
significant (P < 0.01) influence on model prediction, 
for both CONUS and the Southeastern US. 
Variability in the decrease in accuracy score for 
100 iterations was plotted for each predictor in 
the full model in white, ranked in order of 
decreasing importance. For the southeastern US, 
variable permutation is plotted in grey. dNBR, 
differenced Normalized Burn Ratio; dSWIR1, 
differenced shortwave infrared 1; vi57, SWIR1/ 
SWIR2 ratio; dBAI, differenced Burned Area 
Index; PET, annual mean potential evapotranspira
tion; PR, annual mean precipitation; CONUS, con
terminous United States.   
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months in which wildfire dominates (June–November) 
(Fig. 8b). Testing for the potential influence of meteorologi
cal conditions on the temporal trends, we observed a signif
icant negative correlation between PDSI and CBI, indicating 
greater average burn severity in drier years. This correlation 
was significant in both forest (deciduous, mixed, evergreen) 
and woody wetland vegetation types (Fig. 8c). 

Influence of fire type on burn severity 

Relative to wildfires and across forest types and fire frequen
cies, prescribed burns consistently showed a lower average 
burn severity (Supplementary Fig. S3). However, all three 
pine forest types showed a convergence in burn severity as 
fire frequency increased. For example, loblolly pine showed 
a substantial difference in burn severity between prescribed 
and wildfires (median CBI difference of 0.40–0.42) where 
fire frequency was lower (i.e. 1–3 burns within the 23 year 
period), but this difference declined to a CBI difference of 
0.12 where fire frequency was high (i.e. 4+ burns) 

(Supplementary Fig. S3). Similarly, in longleaf pine, the 
differences in severity between prescribed and wildfire 
diminished as fire frequency moved from a single fire to 
moderate fire, and then high fire regime, with the mean 
CBI difference decreasing from 0.16 to 0.08, and 0.02, 
respectively. The exception to this pattern was the bald 
cypress/water tupelo forested wetland type, for which 
severity progressively increased with greater fire frequency 
(Supplementary Fig. S3). 

Discussion 

Addressing regional challenges to mapping burn 
severity 

In this analysis, we predicted continuous CBI burn severity 
values for areas in the Southeast mapped as burned by the 
Landsat BA product, encompassing >170,000 km2 of 
burned area over a 23-year period. This effort produced 
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Fig. 6. Examples of landscapes with frequent prescribed fire (a–c), including: (1) Landsat-8 imagery displayed with a false colour 
composite (shortwave infrared 2, near-infrared, red) reflecting the peak of fire activity, collected on (a) 24 March 2021, (b) 18 April 
2016, and (c) 8 February 2018); (2) the extent of the corresponding annual burned area mapped by the Landsat Burned Area (LBA) 
Product only (red), Monitoring Trends in Burn Severity (MTBS) only (yellow), or both products (orange) in (a) 2021, (b) 2016 and 
(c) 2018; and (3) corresponding modelled Composite Burn Index (CBI) burn severity for the areas mapped as burned by the 
Landsat Burned Area Product.   
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the most inclusive post-fire burn severity data for the region 
to date, mostly notably contributing new burn severity data 
for small and prescribed fires that are the most challenging 
to map and characterise. Average CBI by land cover ranged 
from 1.00 to 1.39, suggesting that most of the burned area in 
the Southeast is of low burn severity, a finding consistent 
with prior efforts in the region (Picotte and Robertson 
2011b; Picotte et al. 2021). While the present effort greatly 
expanded burn severity data, the burned area product still 
shows higher rates of omission across the Southeast relative 
to other regions (Hawbaker et al. 2020a) and under-maps 
prescribed fire in particular (Melvin 2020), suggesting that 

the goal of providing complete fire datasets for the 
Southeast is still ongoing. 

In this effort, image selection and model variables were 
used to help address some of the challenges inherent to a 
Landsat-based burn severity mapping approach in the 
Southeast, including frequent cloud cover, rapid post-fire 
revegetation and the dominance of low burn severity associ
ated with prescribed fires (Godwin and Kobziar 2011; Picotte 
and Robertson 2011b; Vanderhoof et al. 2021). Although 
models developed for the western US predominantly rely 
on dNBR and extended assessment imagery windows 
(Miller et al. 2023), we also considered initial assessments 
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Burn Severity (MTBS) dataset (3) and the model-predicted Composite Burn Index (CBI) burn severity.   

M. K. Vanderhoof et al.                                                                           International Journal of Wildland Fire 34 (2025) WF24137 

12 



to capture immediate post-fire effects. Initial assessment vari
ables of dBAI and dNBR2, for example, both showed greater 
variable importance in the Southeast relative to CONUS. This 
finding suggests that a regional model that could rely more 
heavily on initial assessments may be preferable if we had a 
greater abundance of CBI data representing diverse ecosys
tems and burn severities across the region. As the range of 
burn severity in the Southeast was more truncated (Fig. 2), 
we utilised the full CONUS CBI dataset, taking advantage of 
western forest plots that can be ecologically and structurally 
similar to the Southeast (Bigelow et al. 2017). This approach 
provided a broader range of fire conditions on which to train 
the model, but the more limited range of CBI values in the 
Southeast likely influenced the regional model performance 
metrics (Gelman and Hill 2007). 

Creating unburned CBI pseudo-plots in the Southeast was 
also a challenge. We documented higher mean absolute 
residuals for unburned pseudo-plots in the Southeast com
pared with the non-Southeast (Table 3). This could be attrib
uted to under-mapped prescribed fires (Melvin 2020), 
expansive silviculture activities (Howard and Liang 2019) 
and seasonal fluxes in forested wetland water level (Malone 
et al. 2011; Salvia et al. 2012) creating greater regional 
spectral variability. Expansion of CBI data collection in the 
Southeast, as well as considering alternatives to CBI (e.g.  
Miller et al. 2023) that may be more reflective of Southeast 
fire regimes will likely benefit future national burn severity 
modelling efforts. 

Considering diverse spectral indices associated with veg
etation conditions and post-fire effects beyond dNBR may 
have also improved model performance in the Southeast. 
Across the region, canopy cover can obscure surface fires 
that lack crown scorch (Key and Benson 2006), and seasonal 
flooding may weaken the relationship between dNBR and 
burn severity (Malone et al. 2011; Salvia et al. 2012). In the 
future, airborne or satellite lidar, for instance, could poten
tially improve post-fire characterisation of changes in forest 
structure (e.g. Huettermann et al. 2023). Model choice may 
also be important. Although simpler statistical models (e.g. 
regressions) can facilitate easier communication of a model 
and its results to decision makers, these approaches may 
have limited ability to distinguish between gradients of 
severity so that machine-learning or deep-learning models 
may be necessary to improve burn severity class separability 
(Hultquist et al. 2014). 

Cloud cover remains a challenge. In our effort, an annual 
average of 7.3% of burned pixels were not assigned a burn 
severity value owing to cloudy images limiting data availa
bility in one or more of the imagery windows. Further, the 
number of clear-sky images included in composites averaged 
four in the Southeast compared with seven across CONUS. 
However, no significant relationship between the number of 
images and the absolute residual value was observed. 
Regardless, incorporating datasets that provide a similar 
spatial resolution but denser time series with improved 
opportunities to detect and characterise burn severity prior 
to recovery, like Sentinel-2 or the harmonised Landsat 
Sentinel-2 (HLS) dataset (Vanderhoof et al. 2021; Howe 
et al. 2022), is worth exploring, though modelling multi- 
decadal patterns will still depend on the Landsat archive. 

Ecological and land management implications 

The patterns of burn severity identified in our analysis 
reflect patterns of land use and natural vegetation as well 
as emphasise the utility of our algorithm for natural 
resource management. For example, prescribed fire corre
sponded to lower burn severity estimates than wildfire. 
Although this finding was expected because the application 
of prescribed fire is designed in part to limit burn severity 

Table 4. Total burned area (2000–2022) and predicted Composite 
Burn Index (CBI) values by land cover, forest type and land ownership.     

Land cover Total area burned  
(km2) (relative %) 

Median 
CBI (s.d.)   

Evergreen forest 42,532 (24.8%) 1.17 (0.38) 

Woody wetlands 24,953 (14.6%) 1.31 (0.46) 

Shrub/scrub 12,953 (7.6%) 1.26 (0.41) 

Emergent herbaceous 
wetlands 

11,597 (6.8%) 1.39 (0.43) 

Deciduous forest 7023 (4.1%) 1.00 (0.40) 

Mixed forest 4584 (2.7%) 1.06 (0.44)     

Landowner Total area burned  
(km2) (relative%) 

Median  
CBI (s.d.)   

Public 64,409 (37.6%) 1.23 (0.41) 

Private 106,906 (62.4%) 1.18 (0.44)     

Forest type Total area burned 
(km2) (relative %) 

Median  
CBI (s.d.)   

Loblolly pine 38,456 (22.4%) 1.11 (0.40) 

Slash pine 25,237 (14.7%) 1.32 (0.40) 

Longleaf pine 8895 (5.2%) 1.27 (0.30) 

Loblolly pine/hardwood 4361 (2.5%) 1.08 (0.38) 

Mixed upland 
hardwoods 

4093 (2.4%) 1.13 (0.40) 

Bald cypress/water 
tupelo 

4020 (2.3%) 1.38 (0.44) 

White oak/red oak/ 
hickory 

3837 (2.2%) 1.03 (0.41) 

Sweetbay/swamp 
tupelo/red maple 

3609 (2.1%) 1.29 (0.42) 

Other forest types 12,035 (7%) 1.15 (0.44) 

Total area burned based on the annual Landsat Burned Area product. Of the 
total burned area, 39% was in land cover types not included in the analysis. 
Median CBI calculated from the sampled points with the standard deviation 
(s.d.) in parentheses. Forest types representing <2% of burned area were 
consolidated into the ‘other forest types’ class.  
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(Waldrop et al. 2012), the finding helps increase our confi
dence in the burn severity dataset. In addition, our result 
that woody wetlands showed a higher average burn severity 
compared with non-wetland evergreen forests was consist
ent with Malone et al. (2011), attributable in part to the 
dominance of highly flammable evergreen shrubs in the 
understorey of most forested wetlands in the region 
(Sackett 1975; Behm et al. 2004) as well as the accumula
tion of organic soils that can burn with high severity 
(Mickler et al. 2017). The high flammability and rapid 
regrowth of wetland understorey woody plants also likely 
contributed to the bald cypress/water tupelo forest type 
showing relatively high severity regardless of fire type and 
a small increase in severity in response to increasing fire 
frequency (Steel et al. 2015). Longleaf pine, in contrast, 
showed the greatest convergence of burn severity between 
prescribed and wildfires as fire frequency increased, attrib
utable to the ecosystem’s grass and pine needle litter- 
dominated fuels and mineral soils that burn with relatively 
low intensity over a wide range of environmental conditions 
(Burns 1983; Reid et al. 2012; Mitchell et al. 2014). Loblolly 
pine and slash pine, the primary commercial tree species in 
the region, similarly showed comparable burn severity 
between prescribed and wildfires as fire frequency 
increased, underscoring the importance of periodic pre
scribed burning for protecting timber resources (Kobziar 
et al. 2015; Mason and Lashley 2021). 

A declining trend in burn severity was observed within 
both wildfire and prescribed fire seasons. The finding was 
somewhat surprising given continental predictions of 
increasing wildfire hazard associated with climate change 
(Gao et al. 2021). However, regional climate projections and 
their implications for prescribed fire and wildfire are espe
cially complex, with competing influences of higher 

temperature, higher precipitation and more frequent 
droughts and hurricanes (Mitchell et al. 2014; Kupfer et al. 
2020). The observed trend may instead be related to more 
recent patterns of drought and deluge, with extended 
regional droughts in the first decade of the 21st century 
(Pederson et al. 2012) and recent years (e.g. 2018–2022) 
seeing wetter conditions than average (Abatzoglou et al. 
2018). Also, given that most fire in the region is prescribed, 
these patterns may reflect decisions by prescribed fire prac
titioners that compensate or override climatic patterns, as 
shown by Nowell et al. (2018). Regardless, improved algo
rithms for mapping trends in burn severity will prove essen
tial in validating or challenging predicted regional trends of 
burn severity in the context of global climate change. 

Exploring model performance 

Previous endeavours to model burn severity have developed 
flexible frameworks (Parks et al. 2019; Picotte et al. 2020), 
but the models have struggled across the Southeast 
(Table 2). Similarly, although our model’s RMSE and MSE 
were similar between the CONUS and the Southeast data, its 
explanatory power within the Southeast was substantially 
weaker, suggesting that predictive strength in the Southeast 
may be lower than has been achieved for the western US. 
One possible reason could be that prescribed fires in the 
Southeast often occur during leaf-off (dormant season) peri
ods and target consumption of understorey vegetation. 
Lower pre-fire amounts of photosynthetic vegetation may 
influence CBI measurements and pre- to post-fire changes in 
spectral reflectance (Key and Benson 2006; Gallagher et al. 
2020). However, we actually found that the Southeast had 
lower mean absolute residuals in the dormant season rela
tive to the growing season, and further, that the Southeast’s 
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Fig. 8. Patterns in forest burn severity including (a) temporal trend in annual Composite Burn Index (CBI), (b) temporal trend within the 
season (December–May) dominated by prescribed fire compared with the season (June–November) dominated by wildfire, and (c) the 
correlation between the Palmer Drought Severity Index (PDSI) and CBI. Shaded area represents the 95% confidence interval of CBI 
severity values. Temporal trend significance evaluated using Mann–Kendall test for trends (τ) (a, b) and correlation significance evaluated 
using Spearman Rank Order Correlation (ρ) (c).   
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low and moderate burn severity plots showed lower mean 
absolute residuals relative to outside the Southeast. This 
demonstrated that our approach was not impacted by fire 
timing. Lower residuals from dormant season burns may 
reflect the more static condition of the post-burn environment 
prior to spring green-up, whereas initiation of vegetation 
recovery during the growing season is almost immediate. 

Alternatively, the lower explanatory power of our model 
in the Southeast may instead be attributable to the minimal 
number of Southeast high-severity CBI plots (Gelman and 
Hill 2007). High-severity points represented <5% of the 
Southeast’s CBI plots (Fig. 3) and showed higher mean 
absolute residuals relative to the non-Southeast (Table 3). 
The inclusion of climate normals (i.e. PET and PR) improved 
the CONUS-wide model performance in part by accounting 
for regional differences in climate–fire regime feedbacks 
(e.g. Wasserman and Mueller 2023). However, their inclu
sion could also have caused an under-prediction or negative 
bias of the region’s minority case (Maxwell et al. 2018). 
Despite this source of uncertainty, utilising CONUS-wide 
CBI plot data allowed us to compensate for the lower avail
ability of CBI plot data in the Southeast, in particular high- 
severity CBI plots, and enabled us to produce a scalable burn 
severity model that can potentially be applied outside of the 
region. Our modelling efforts can be used as a foundation for 
other global fire-prone regions that face similar challenges 
in characterising burn severity, but the transferability will 
depend on how similar the fire regimes and vegetation are 
to that represented by the CBI datasets. 

Conclusion 

Our scalable CBI model provides novel burn severity data 
that are more inclusive of the many small and prescribed 
fires across the Southeast compared with prior efforts. The 
consistency between expected and observed burn severity 
patterns suggests that our burn severity data can be success
fully used for ecological and modelling applications. Trends 
and patterns in burn severity between vegetation and by fire 
types (e.g. prescribed versus wildfire) and fire frequency 
have important implications for prioritising local land man
agement actions, such as hazardous fuel reduction and pre
scribed fire to manage wildfire risk (Kolden 2019), optimise 
forestry practices and monitor fire-dependent habitat condi
tion (Alba et al. 2015). This improved capacity to predict 
burn severity in response to prescribed fire regimes, natural 
community types and forestry practices will contribute to 
improved estimates of atmospheric emissions (Jaffe et al. 
2020; Kramer et al. 2023), residual carbon storage (Larkin 
et al. 2014), impacts on natural resources and accomplish
ment of ecological goals (Weiss et al. 2019). Future addition 
of high-severity CBI data within the Southeast and incorpo
ration of more frequent imagery from compatible moderate- 
resolution satellite missions, like the HLS dataset, will 

further improve our capacity to map burn severity in the 
region. 

Supplementary material 

Supplementary material is available online. 
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