

MMMMarxan with arxan with arxan with arxan with ZoneZoneZoneZonessss

(v1.0(v1.0(v1.0(v1.0....1111))))

Conservation Zoning using Spatially Explicit Annealing

A Manual Prepared for Ecotrust, the National Heritage Trust and

the Applied Environmental Decision Analysis centre

Matthew Watts

Carissa Klein

Romola Stewart

Ian Ball

Hugh Possingham

November 2008

Suggested citation: Watts, M. E., C. K. Klein, R. Stewart, I. R. Ball, and H. P.

Possingham. 2008. Marxan with Zones (V1.0.1): Conservation Zoning using

Spatially Explicit Annealing, a Manual.

Page 1 of 41

Introduction

Marxan with Zones (called Marxan Z for short) is a decision support tool developed by

The Ecology Centre, University of Queensland. A number of institutions have played a

key role in supporting the development of Marxan Z software. We wish to acknowledge

the funding received from Ecotrust, whose interest in this software development arose
from the need to support the design of marine protected areas along California’s coast as

part of California’s Marine Life Protection Act. We also acknowledge funding received
from the National Heritage Trust and the Applied Environment Decision Analysis centre.

Marxan Z is an extension of Marxan software, developed by Ian Ball and Hugh

Possingham. Marxan Z has the same functionality as Marxan but is able to allocate

planning units to multiple zones (i.e. marine protected areas of various protection levels)
and incorporate multiple costs into a systematic planning framework. The purpose of

Marxan Z is to assign each planning unit in a study region to a particular zone in order to

meet a number of ecological, social and economic objectives at a minimum total cost.

Marxan is a tool for designing efficiently configured protected area networks or reserve
systems. Marxan Z extends on the range of problems the software can solve to include

the near optimal allocation of resources to multiple-zone configurations.

This manual is separated into two major sections: 1) Using Marxan Z: Input and Output

Files and 2) Objective Function and Algorithms Used in Marxan Z. The first section
outlines the basic information necessary to understand and use Marxan Z. The second

section of the manual provides additional technical details of Marxan Z. A list of useful

publications that discuss or apply Marxan are provided. These references may be very
useful in developing Marxan Z applications.

This manual was designed using the Marxan manual (v1.8.2) as a guide but was adapted

to include the additional functionality of Marxan Z and exclude Marxan features that are

not applicable to Marxan Z.

Page 2 of 41

Table of Contents

1.0 USING MARXAN Z: INPUT AND OUTPUT FILES ----------------------------------3

1.1 INPUT FILES--3
Planning Unit File ---3
Feature File --4
Planning Unit Versus Feature ---5
Zones ---6
Costs --6
Zone Cost ---7
Boundary Length --8
Zone Boundary Cost--8
Planning Unit Zone--9
Planning Unit Lock-- 10
Zone Target and Zone Target 2 --- 10
Zone Contribution and Zone Contribution 2--- 12
Input Parameter File --- 13

1.2 OUTPUT FILES -- 19
Solutions for Each Run -- 19
Best Solution for All Runs -- 19
Missing Values for Each Run-- 19
Summary Information --- 20
Scenario Details--- 21
Summed Solution -- 21
Screen Log File --- 22

1.3 SCREEN OUTPUT -- 24

2.0 OBJECTIVE FUNCTION AND ALGORITHMS USED---------------------------- 26

2.1 THE OBJECTIVE FUNCTION --- 26
Cost of the Zone Configuration --- 27
Boundary Length and Fragmentation-- 27
Representation Requirements for Features --- 27
Feature Penalty --- 27
Feature Penalty Factor--- 30
Cost Threshold Penalty -- 30

2.2 ALGORITHMS METHODS --- 31
Simulated Annealing-- 31
Iterative Improvement --- 33

3.0 ACKNOWLEDGEMENTS -- 35

4.0 KEY REFERENCES -- 36

Appendix A. Example Input Parameter File --- 40

Page 3 of 41

1.0 Using Marxan Z: Input and Output Files

1.1 INPUT FILES

There are seven fundamental input files used in Marxan Z. In addition, there are optional

input files that facilitate additional functionality in Marxan Z.

Fundamental Input Files Optional Input Files

Planning Unit Boundary Length

Feature Zone Boundary Cost

Planning Unit Versus Feature Planning Unit Zone

Zones Planning Unit Lock

Costs Zone Target or Zone Target 2

Zone Cost Zone Contribution or Zone Contribution 2

Input Parameter

This section will describe the basic structure of each file. With the exception of the input
parameter file, all files consist of a header line and a main body. The header line is a list

of specific names describing what is contained in each column of the main body. Each

file contains a set of required and optional header names for Marxan Z to run. The
headers in each file must be written in all lower-case letters with no punctuation, spaces,

or numerals (unless otherwise noted). All of the input files can be created in any
spreadsheet or text editing software. Variables in a single line can be separated by a

variety of characters, including spaces, tabs, or commas. An example of this format is

shown in the planning unit file section.

Planning Unit File
Default name: “pu.dat”

Description: This file is required to run Marxan Z. It contains a list of all planning units
in the study region and includes the costs associated with assigning a planning unit to a

particular zone. Multiple costs can be indicated for each planning unit. The importance
of each cost relative to the other costs can be expressed in the planning unit file or in the

zone cost file (described later in this document). If the zone cost file is used to weigh

each cost, the values of each cost should be normalized to the same scale in the planning
unit file.

Page 4 of 41

Header Required/Optional Description

id required The numeric identifier for this planning unit.

costname Optional, will use a

default value of 1 if

not specified

The individual cost of each planning unit.

Multiple cost fields with different names can be

used into Marxan Z’s planning unit file. The
header ‘costname’ can be replaced with the

actual name of the cost but must not include

delimiters (spaces, tabs, etc.).

Example – portion of pu.dat file

id, salmonfishing, squidfishing
1, 34, 22

2, 4, 0
3, 40, 12

Feature File
Default name: “feat.dat”

Description: This file is required to run Marxan Z. Each feature is listed in this file and

assigned a unique identifier. The range of spatial features that can be accepted include
ecological, economic and social features. The areal target amount (or proportional target

amount) of each feature to capture in the nominated zones is specified in this file. If an
overall target is specified in this file through the target, prop, targetocc or propocc fields,

then a zone contribution and or contribution 2 file must be used to specify which zones

contribute to these targets, and the contribution rates of zones towards these targets. The

overall target specified in the feature file and the contribution rates specified in the zone

contribution file work in tandem to specify overall targets for features and differential
contribution rates of zones to these targets. See the section below on zone contribution for

a description of these files.

Header Required/Optional Description

id required The numeric identifier for this feature. The id must

be a positive integer.

target optional if prop is

used

The target amount (in unit of puvfeat.dat file) of

the feature to include across all protected zones
(i.e. overall target).

prop optional if target is

used

An alternative to target. This is the proportion of

the total amount of the feature which must be
included in the protected zones. A value of 0.3

would indicate that 30% of that feature should be

protected.

Page 5 of 41

Header Required/Optional Description

targetocc optional The number of occurrences of the feature required.
If the feature occurs in a planning unit, regardless

of its amount, that is considered one occurrence.

This can be used in conjunction with or instead of

‘target’.

propocc optional The percentage of occurrences of the feature

required. This can be used in conjunction with or

instead of ‘prop’.

fpf optional The penalty factor for that feature.

name optional Indicates the name of the feature. Do not include
any spaces or non-alphanumeric characters in the

name.

fpf

The feature penalty factor is a multiplicative factor which can be unique to each feature.
It is a measure of how important it is to meet the target for the feature. If it is below 1,

then the algorithm is likely to refuse to add a planning unit to include that feature if there
are no other features on the planning unit. If the solution falls short of meeting a target

for a feature, the fpf should be increased to a value greater than 1.

Example – portion of feat.dat file

id, prop, fpf, name
1, 0.3, 1, RockyReef
2, 0.9, 1, KelpForest

3, 0.5, 1, FishingGrounds

Planning Unit Versus Feature
Default name: “puvfeat.dat”

Description: This file is required to run Marxan Z. It contains the information on the

distribution of features across the planning units. The range of features that can be

accepted include ecological, economic and social information. The file must have three
columns in the following order - featureid, puid, amount - sorted by the planning unit id

for Marxan Z to execute properly.

Header Required/Optional Description

featureid required Feature idendifier – must be indicated in the

feature file.

puid required Planning unit identifier – must be indicated in

the planning unit file.

amount required Amount of feature in the planning unit. The
measurement unit between features can be

different. However, the units within a feature

Page 6 of 41

must be consistent.

Example – portion of puvfeat.dat file

featureid, puid, amount

1, 1, 350

1, 2, 50

1, 3, 100
2, 3, 160

3, 1, 300
3, 2, 200

Zones
Default name: “zones.dat”

Description: This file is required to run Marxan Z. It contains a list of the names and

numeric identifiers of all possible zones. The file must have two fields in the following
order – zoneid, zonename - sorted by lowest to highest zoneid.

Header Required/Optional Description

zoneid required The numeric identifier number for the zone.

The zoneid must be a positive integer and the

file must be sorted by lowest to highest zoneid.

zonename required Indicates the name of the zone. Do not include
any spaces or non-alphanumeric characters in

the name.

Example – portion of zones.dat file

zoneid, zonename
1, Available
2, MarineReserve

3, MarinePark

4, FishingZone

Costs
Default name: “costs.dat”

Description: The purpose of this file is to assign each cost name in the planning unit file

with a unique numeric identifier. If this file is not included in Marxan Z, the cost values
indicated in the planning unit file will be invalid and a default cost of 1 for all planning

units will be used. This file contains a list of the names and identifiers for all possible

costs. The cost values are included in the planning unit file. The file must have two
fields in the following order – costid, costname - sorted by lowest to highest costid.

Header Required/Optional Description

Page 7 of 41

costid required The numeric identifier for the cost. The costid
must be a positive integer and the file must be

sorted by lowest to highest costid.

costname required Indicates the name of the cost. Do not include

any spaces or non-alphanumeric characters in

the name.

Example – portion of costs.dat file

costid, costname

1, area

2, salmonfishing
3, squidfishing

Zone Cost
Default name: “zonecost.dat”

Description: This file is required for Marxan Z to run. It includes a weighting factor for

each cost in each zone. If some combinations of zone and cost are not present, that cost

will be given a weighting of 0 and will not be considered to formulate a solution. The file
must have three fields in the following order – zoneid, costid, multiplier - sorted lowest to

highest by zoneid, then by costid.

Header Required/Optional Description

zoneid required The zone identifier - must be compatible with

the zones.dat file.

costid required The cost identifier - must be compatible with

the costs.dat file.

multiplier required This number can be a fraction or an integer. In
a given zone, it will be multiplied by the

specified cost. All costs in a given zone will be

multiplied by the specified multiplier and then

added to give a total cost for each planning unit.

For example, if there are 3 costs in one zone,
the total cost for that zone would be calculated

using the following equation:

Total C = (C1 * M1) + (C2 * M2) + (C3*M3)

Where C = cost, M = Multiplier

Example – portion of zonecost.dat file

zoneid, costid, multiplier
2, 1, 0.2

2, 2, 0.4

Page 8 of 41

2, 3, 0.4

Boundary Length
Default: “bound.dat”

Description: This is an optional file in Marxan Z. It is required if the boundary length
modifier (BLM) is greater than 0 in the input.dat file. This file contains information on

the boundary “costs” of two planning units. If boundaries are duplicated in this file, they

will be summed together. When a planning unit is on the edge of a study region, it is

identified as a boundary of a planning unit with itself (i.e. the planning unit identifier is

the same for id1 and id2). The file must have three fields in the following order – id1, id2,
boundary.

Header Required/Optional Description

id1 required Planning unit identifier

id2 required Planning unit identifier of the neighbouring
planning unit to id1 or the same as id1 for an

irremovable boundary.

boundary required Should be greater than or equal to zero. Can be
the actual length of the boundary or it can be

modified to reflect the ‘cost’ of separating two

planning units.

Example – portion of bound.dat file

id1, id2, boundary

1, 1, 1
1, 2, 1

1, 3, 1
2, 3, 1

Zone Boundary Cost

Default: “zoneboundcost.dat”

Description: This is an optional file in Marxan Z. This file is used if you want
boundaries between different zones to have different costs (e.g. If you want two particular

zones to be adjacent to one another, you could increase the boundary cost between those

zones). If this file is not present, all boundaries between zones will be given a cost of 1.
Likewise, if a zone-zone boundary cost is not indicated in this file, it will be given a cost

of 1. This file is similar to the bound.dat file but relates the boundary “cost” of zones
rather than planning units. The file must have three fields in the following order –

zoneid1, zoneid2, cost - sorted lowest to highest by zoneid1, then by zoneid2.

Header Required/Optional Description

zoneid1 required Zone identifier - must be indicated in the

Page 9 of 41

zones.dat file.

zoneid2 required Zone identifier, different from zoneid1 - must
be indicated in the zones.dat file.

cost required The cost between zoneid1 and zoneid2. If cost

is not indicated, a cost of 1 will be assigned.

Example – portion of zoneboundcost.dat file

zoneid1,zoneid2,cost
1,1,0

2,2,0

3,3,0

1,2,0.1
1,3,0.1

2,3,1

Planning Unit Zone
Default: “puzone.dat”

Description: This is an optional file in Marxan Z. This file is used if you want to restrict

certain planning units to two or more of your zones. This file must have two fields in the
following order – puid, zoneid - sorted lowest to highest by puid, then by zoneid.

Do not use this file to lock planning units to a single zone; instead you should use the

"Planning Unit Lock" file for this purpose. Do not place entries here for planning unit

identifiers that are not in the "Planning Unit File".

Header Required/Optional Description

puid required Planning unit identifier that is restricted to a

specific zone. The same planning unit can be
listed more than once to indicate restriction to

more than one zone.

zoneid required Zone identifier that the planning unit in puid is

restricted to.

Example – portion of puzone.dat file

puid, zoneid
18, 1

19, 2

19, 3
20, 1

Page 10 of 41

Planning Unit Lock
Default: “pulock.dat”

Description: This is an optional file in Marxan Z. This file is used if you want to restrict
certain planning units to a single zone. This file must have two fields in the following

order – puid, zoneid - sorted lowest to highest by puid, then by zoneid. Do not place

entries here for planning unit identifiers that are not in the "Planning Unit File".

Header Required/Optional Description

puid required Planning unit identifier that is restricted to a

specific zone. The same planning unit can be
listed more than once to indicate restriction to

more than one zone.

zoneid required Zone identifier that the planning unit in puid is

restricted to.

Example – portion of pulock.dat file

puid, zoneid
57,2

71,2

72,2
86,2

Zone Target and Zone Target 2
Default name: “zonetarget.dat” or “zonetarget2.dat”

Description: These are optional files in Marxan Z. Zone target and zone target 2 are not
required to run Marxan Z. Zone target and zone target 2 are used to allow zone based

targets to be set in Marxan Z. These files can be used at the same time as overall targets
(target or prop) set in the feature file, or they can be used instead of overall targets.

Zone target: The zone target file allows the user to set a target for each feature in each
zone (i.e. zone-specific target). It is not necessary to indicate a zone-specific target for

features. The zone target file and zone contribution file are not related to each other.
The available zone can also have zone-specific target; a zone-specific target in this zone

will ensure that a target amount of nonimated features is not protected. The files must

have the correct fields in the correct order – specified in the tables below.

Example of how zonetarget.dat works

Page 11 of 41

 In zonetarget.dat, feature Y has a target of 25 square km in zone 2. In feat.dat, feature Y
has an overall target of 50 square km. In the study region, 500 square km of feature Y

occurs. This means that we want 10% of feature Y to be protected overall, with 5% of

the feature in zone 2, and 5% of the feature in any other protected zone.

Fields required for zonetarget.dat

Header Required/Optional Description

zoneid required The zone identifier

featureid required The feature identifier

target required The target amount (with the same unit used in

the puvfeat.dat file), percentage, occurrence or
occurrence percentage of the feature to include

in the specified zone (i.e. zone-specific target).
Negative targets are not allowed.

targettype optional Target type indicates the type of target specified
in the target column (i.e. amount, percentage,

occurrence, occurrence percentage). If this
column is not included, Marxan Z will use a

default of 0 (see targettype definitions below)

Fields required for zonetarget2.dat

Header Required/Optional Description

zoneid required The zone identifier

target required The target amount (in unit of puvfeat.dat file),

percentage, occurrence or occurrence

percentage of the feature to include in the

specified zone (i.e. zone-specific target).
Negative targets are not allowed.

targettype optional Target type indicates the type of target specified

in the target column (i.e. amount, percentage,

occurrence, occurrence percentage). If this
column is not included, Marxan Z will use a

default of 0 (see targettype definitions below)

Target Type Values

0 = Amount (in unit of puvspr2.dat file) target of feature. Similar to target in the feat.dat
file.

1 = Percentage target as proportion of total amount of feature. Similar to prop in the

feat.dat file.

2 = Occurrence target. If the feature occurs in a planning unit, regardless of its amount, it

is considered one occurrence. Similar to targetocc in the feat.dat file.

Page 12 of 41

3 = Percentage target as proportion of total occurrences of feature. Similar to propocc in

feat.dat.

Zone target 2:

Zone target 2 is identical to zone target except it does not include the featureid field,
meaning that the target specified will apply to all features within the specified zone. If

you use both files - zone target and zone target 2 - zone target 2 will override zone target.

Example – portion of zonetarget.dat file

zoneid, featureid, target
1, 3, 250

2, 1, 50

Zone Contribution and Zone Contribution 2

Default name: "zonecontrib.dat" or "zonecontrib2.dat"

Description: These are optional files in Marxan Z. Zone contribution and zone

contribution 2 are not required to run Marxan Z, although one or other of these files must

be used if an overall target is specified in the feature file. They work in tandem with the

overall target specified in the feature file to specify differential contribution rates to the

overall target. The zone contribution files are not related to the zone target files. The
files must have the correct fields in the correct order – specified in the tables below.

Zone contribution: The zone target file allows the user to specify a contribution rate for
each feature in each zone to the overall target specified in the feature file. The two files

are work in tandem with each other.

The "zonecontrib.dat" file allows users to specify a contribution fraction for each feature

in each zone.

Fields required for zonecontrib.dat

Header Required/Optional Description

Zoneid required The zone identifier

Featureid required The feature identifier

Fraction required The contribution fraction for this feature in this

zone as applied to the overall target specified in

the feature file. Negative contributions are not

allowed.

Page 13 of 41

The "zonecontrib2.dat" file allows users to specify a contribution fraction for each zone.
This file omits the featureid field as all features in a zone have the same contribution

fraction.

Fields required for zonecontrib2.dat

Header Required/Optional Description

zoneid required The zone identifier

fraction required The contribution fraction for all features in this

zone as applied to the overall target specified in

the feature file. Negative contributions are not

allowed.

Example of how zonecontrib.dat works

 In zonecontrib.dat, feature Y has a contribution of 1 in zone 2. In feat.dat, feature Y has

an overall target of 50 square km. A planning unit contains 25 square km of feature Y,
and is placed in zone 2. It will have a contribution of 25 square km to the target for

feature Y (25 * 1), and we will require an additional 25 square km of feature Y to meet
target.

If feature Y has a contribution of 0.2 in zone 2, then the contribution of placing the same

planning unit in zone 2 is (25 * 0.2 = 5) 5 square km, and we will require an additional 45

square km of feature Y to meet target.

Example – portion of zonecontrib2.dat

zoneid, fraction

1, 0

2, 0.2

3, 1

Input Parameter File

This file is required to run Marxan Z. It contains all of the main parameter definitions

that control the way in which Marxan Z works. A convenient way to build and edit this

file is using the Inedit.exe program. However, it can be built and edited using a text
editor.

There are six sections in this file: General Parameters, Annealing Parameters, Cost

Threshold, Input, Save, and Program Control. The variables, their default values, and a

brief description of the variables are listed in this section. A more detailed description of
the more complex variables is described at the end of each section and sometimes in

section 2.0 of this manual. In the input parameter file, any line which does not start with

one of the valid variable names is ignored and hence can be used as a comment line.

Page 14 of 41

Note that all of the variable names are in upper case characters with no spaces. To set the
value of a variable, start a line with the variable name and follow it with the value to set

that variable to. The variables can occur in any order in the file, but an error will result if

any variable is defined twice. Most of the variables have default values which will be

used if they are not defined. An example input file is provided in Appendix A.

General Parameters

Variable Default

Value

Brief Description

BLM 0 Boundary length modifier

PROP 0.5 Proportion of planning units to start in run. It must be a
number between 0 and 1. When using simulated annealing

with iterative improvement (recommended), changing the

value has no measurable impact on the final solution.

RANDSEED -1 Random seed number must be an integer. If the value is

negative, the program will randomly select a seed. A

positive value would only be used for debugging purposes or

if you want more than one application of the program to be

identical.

NUMREPS 100 Number of separate runs with same starting condition.

AVAILABLE

ZONE

1 The available zone is treated as an unprotected zone in

Marxan Z. This is where you indicate which zone number

from the zones input file is your available zone.

Boundary Length Modifier (BLM)

The BLM is a variable that controls the importance of minimizing the boundary length

relative to the planning unit cost. In other words, the BLM is a parameter that directs the
assignment of planning units to zones in a cluster formation rather than selecting several

disconnected planning units. With a small BLM, the algorithm concentrates on
minimizing planning unit cost while a larger BLM places greater emphasis on

minimizing the boundary length. A low BLM will allow the program to select several

smaller areas, whereas a larger BLM will force fewer, larger areas be selected. If the
BLM is set to zero, then the boundary length will have no impact on the solution. There

is not a universally good value for BLM, as it is subject to the cost measures and
geometry of the study region/planning units for any given planning project. The user

must explore the effects of different BLM values to determine an efficient BLM. A

method for determining an efficient level of spatial compactness is described by Stewart
and Possingham (Stewart and Possingham 2005). This method considers the effect of

increasing the BLM and minimizing boundary length of a Marxan solution.

Annealing Parameters

Variable Default
Value

Brief Description

NUMITNS 1 million Number of iterations for annealing for each run (i.e. number

Page 15 of 41

Variable Default
Value

Brief Description

of times Marxan Z tries to generate a solution for each run).

STARTTEMP 1 Starting temperature for annealing. A value of -1 indicates

that adaptive annealing will be used and the program will

automatically select a starting temperature. This is
recommended for use in Marxan Z.

COOLFAC 0 This determines how quickly the system cools. If the
STARTTEMP is set to -1, this variable is not necessary to

run Marxan Z. This is recommended for use in Marxan Z.

NUMTEMP 10,000 Number of temperature decreases for annealing. This must

be less than or equal to the number of iterations. A value of

10,000 is ideal and is recommended in Marxan Z. Setting it

lower can make the regime too coarse; setting it too high will

lead to round-off error problems with temperature.

Numer of Iterations

The more iterations set, the longer the program will run, and the more likely Marxan Z

will generate a better solution (i.e. lower objective function value). The ideal number of

iterations will vary between projects. If the iterations are varied and a plot of iterations
vs. objective function value is generated, it is possible to determine the point in which

increasing the number of iterations stops producing results with a significantly improved
objective function value.

Cost Threshold
If the cost threshold features are not used, this section does not need to be included in the

Marxan Z input files. A detailed description of the cost threshold is provided in section
2.0 of this manual.

Variable Default

Value

Brief Description

COSTTHRESH 0 The cost threshold allows the user to cap the zoning

configuration to a set cost. Setting a cost threshold to zero
disables this feature.

THRESHPEN1 0 Threshold penalty parameter 1

THRESHPEN2 0 Threshold penalty parameter 2

Input
All possible input files and their default name are listed in this section. However, your

input section only needs to include the required Marxan Z files plus the optional files that

you choose to utilize, as described in this manual.

Page 16 of 41

Variable Default Name Brief Description

INPUTDIR User defined Input directory where data files are
stored on the users computer

PUNAME pu.dat Name of planning unit file

FEATNAME feat.dat Name of feature file

PUVFEATNAME puvfeat.dat Name of planning unit versus feature file

ZONESNAME zones.dat Name of zones file

COSTSNAME costs.dat Name of cost file

ZONECOSTNAME zonecost.dat Name of zone cost file

BOUNDNAME bound.dat Name of boundary length file

ZONEBOUNDCOSTNAME zoneboundcost.dat Name of zone boundary cost file

PUZONENAME puzone.dat Name of planning unit zone file

PULOCKNAME pulock.dat Name of planning unit lock file

ZONETARGETNAME zonetarget.dat Name of zone target file

ZONETARGET2NAME zonetarget2.dat Name of zone target 2 file

ZONECONTRIBNAME zonecontrib.dat Name of zone contribution file

ZONECONTRIB2NAME zonecontrib2.dat Name of zone contribution 2 file

Save
To generate any of the listed output files (i.e. save files) in Marxan Z, a value of 2 or 3 (a

value of 2 is the ArcView format, 3 is the comma delimited ASCII format) must be

specified next to the file name. If a value of 0 is next to the file name, that output file will
not be generated. A description of each of these files is given in the output files section.

Variable Default Value Brief Description

SCENNAME User defined Name of scenario for save files

SAVERUN 3 Save each run?

SAVEBEST 3 Save best run?

SAVESUMMARY 3 Save summary information?

SAVESCEN 3 Save scenario information?

SAVETARGMET 3 Save targets met information?

SAVESUMSOLN 3 Save summary solution information?

SAVESOLUTIONSMATRIX 3 Save all runs in a single matrix?

SOLUTIONSMATRIXHEADERS 1 Include header rows in solutions matrix.

SAVEPENALTY 3 Save computed feature penalties?

SAVELOG 3 Save log file?

SAVEANNEALINGTRACE 3 Report detail for simulated annealing.

ANNEALINGTRACEROWS 1000 Number of iterations to report detail for.

SAVEITIMPTRACE 3 Report detail for iterative improvement.

ITIMPTRACEROWS 1000 Number of iterations to report detail for.

SAVEZONECONNECTIVITYSUM 3 Save zone connectivity sum for runs.

OUTPUTDIR User defined Output directory to store output files on

Page 17 of 41

the users computer

Program Control
There are two basic algorithms that can be used to formulate a solution in Marxan Z:

simulated annealing and iterative improvement. A detailed description of these

algorithms is provided in section 2.0 of this manual. These algorithms can be used alone
or in combination with each other. The run mode selected in the input parameter file

determines which algorithm, or combination of algorithms, is used to formulate a solution
in Marxan Z.

Variable Default Value Brief Description

RUNMODE 1 Using the default value of 1 will apply

annealing followed by the iterative

improvement algorithm, giving the

best possible results in Marxan Z.

MISSLEVEL 1 This is the proportion of the target

which a feature must reach in order for

it not to be counted as missing. A
value of 1 means that 100% of the

target for a feature must be included in

the solution, or it will be considered

an unmet goal (i.e. missing).

ITIMPTYPE 0 0 is recommended in Marxan Z

VERBOSITY 2 This value indicates how much

information to print on the Marxan Z

screen when running. A value of 0
will display the lowest level of

information and a level of 3 will show
the highest amount of information. A

more detailed description of each

value is in the Screen Output section.

Run Mode

There are four possible run modes. Each mode determines which selection algorithm is

used. Using the default value of 1 will apply annealing followed by the iterative

improvement algorithm, giving the best possible results in Marxan Z.

Value Description

-1 Use no methods

1 Apply annealing followed by the iterative improvement algorithm

4 Use only the iterative improvement.

6 Use only annealing

Page 18 of 41

Iterative Improvement Type

There are five possible iterative improvement types. Iterative improvement will only be

used when a run mode using the iterative improvement algorithm is selected. Using the

default value of 0 is recommended in Marxan Z.

Value Description

-1 Do not use iterative improvement

0 Normal Improvement

1 Two Step Iterative Improvement

2 Swap Iterative Improvement

3 Normal Followed by Two Step

Page 19 of 41

1.2 OUTPUT FILES

In the input parameter file, the user can indicate which output files Marxan Z generates.

There are seven types of output files that Marxan Z can generate. The files each take on

the scenario name defined in the input parameter file, followed by an abbreviation for

each file type. This section will describe each of the output files.

Solutions for Each Run
Name in input.dat: SAVERUN

Name of output file: scenario_r001.dat, scenario_r002.dat, etc., where ‘scenario’ is the
name supplied by the user in the SCENNAME parameter of the input.dat parameter file.

Description: A file is produced for each run of the algorithm describing which planning
units were selected in each zone. It contains the planning unit identifier, followed by the

zone identifier, separated by a comma. Each planning unit identifier is on a new line.

Best Solution for All Runs
Name in input.dat: SAVEBEST

Name of output file: scenario_best, where ‘scenario’ is the name supplied by the user in

the input parameter file

Description: A file is produced for the best solution from a set of runs in Marxan Z. It
contains the planning unit identifier, followed by the zone identifier, separated by a

comma. Each planning unit identifier is on a new line.

Missing Values for Each Run
Name in input.dat: SAVETARGMET

Name of output file: scenario_mv001.dat, where ‘scenario’ is the name supplied by the
user in the input parameter file

Description: This file contains information on how well the final solution from each run

did with regard to meeting the feature’s target. This file will only be generated for

individual run solution files which are also generated. It must be selected with either the
solutions for each run option or the best solution option. The file contains the following

column headers: feature, feature name, target, amount held, occurrence target,

occurrences held, target met. Each column is described below. For each zone specified

in zones.dat (except for the available zone), there are separate target, amount held, and

occurrences held columns associated with the zone.

Page 20 of 41

Header Description

Feature The identifier of the feature, indicated in feat.dat

Feature Name The optional name for the feature, indicated in feat.dat

Target The target amount for the feature, indicated in feat.dat

Total Amount Total amount of the feature in the study region

Contributing Amount

Held

Amount of the feature captured multiplied by the features

contribution fraction for the zone it is captured in

Occurrence Target The target number of occurrences for the feature

Occurrences Held Number of occurrences of the feature captured

Target Met ‘yes’ if both targets above are met, otherwise ‘no’

Target Zone1 The target amount for the feature in zone 1, indicated in

zonetarget.dat

Amount Held Zone1 Amount of the feature captured in zone 1

Contributing Amount

Held Zone1

Amount of the feature captured in zone 1 multiplied by the

features contribution fraction in zone 1

Occurrence Target
Zone1

The target number of occurrences for the feature in zone 1,
indicated in zonetarget.dat

Occurrences Held

Zone1

The number of occurrences of the feature captured in zone 1

Target Met Zone1 ‘yes’ if both targets above are met, otherwise ‘no’

The 6 fields specified for zone 1 are repeated for each zone, with "Zone1" in the field

name substituted by the name of the zone.

Summary Information
Name in input.dat: SAVESUM

Name of output file: scenario_sum.dat, where ‘scenario’ is the name supplied by the user

in the input parameter file

Description: This file contains summary information on each run and contains the
following column headers to explain which is in each line: run no, score, cost (for each

cost indicated in the pu.dat file), planning units (per zone), boundary length (per zone),

penalty, shortfall, missing values. Each header is explained below.

Header Description

Run no The run number for that line.

Score The objective function score for the solution.

Cost Cost value for the solution for each cost in the pu.dat file.

Planning Unit Count

(for each zone)

Number of planning units in the solution for each zone.

Page 21 of 41

Planning Unit Cost
(for each zone)

The total cost of planning units for each zone.

Boundary Length The boundary length of the solution.

Penalty The penalty score for missing features for the solution.

Shortfall Shortfall is equal to the sum - across all features that have not

met their target - of the target minus amount in solution. If a

feature target is met, there is no shortfall.

Missing Values The number of features that have not met their target.

When there are some features which haven’t met their target, the last three headers are

useful in determining how poor the actually is. It is possible to have a high penalty and
still be very close to the targets, particularly if the feature penalty factors have been set

very high. The shortfall is a good indication of whether the features are very close or

very far from their targets (the number of missing values gives further information in this

vein). If there are five features which each have missed their targets, but the combined

shortfall is very small, then they could all be only narrowly missing their targets (eg 99%
or higher) and the user might not be particularly concerned.

Scenario Details
Name in input.dat: SAVESCEN

Name of output file: scenario_sen.dat, where ‘scenario’ is the name supplied by the user

in the input parameter file

Description: This file contains a documented list of the options that make up the scenario

created in the input parameter file. It is used to keep track of scenario details when

multiple scenarios are run.

Summed Solution
Name in input.dat: SAVESUMSOLN

Name of output file: scenario_ssoln.dat, where ‘scenario’ is the name supplied by the user

in the input parameter file

Description: This file is the summed solution of all individual runs in a scenario. It

indicates how often a planning unit was included in a solution, across all individual runs.
In addition, it shows how often a planning unit was included in an individual zone

(except for the available zone). It is a useful way to explore the irreplaceability of
planning units in a zone.

Solutions Matrix
Name in input.dat: SAVESOLUTIONSMATRIX

Page 22 of 41

Name of output file: scenario_solutionsmatrix.dat, where ‘scenario’ is the name supplied
by the user in the input parameter file

Description: This file record which planning units were selected in each zone for all runs.

If the SOLUTIONSMATRIXHEADERS parameter, has a value of 1, a header row is

included in the file. If you choose to include the header row, a list of the planning unit
identifiers is contained in the row. There is one row for each run that contains the zone

identifier for each planning unit, indicating which zone each planning unit was placed in

for the run. It is a useful way to export information on planning unit selection for cluster

analysis in R or other statistical software packages.

Penalty

Name in input.dat: SAVEPENALTY

Name of output file: scenario_penalty.dat, where ‘scenario’ is the name supplied by the

user in the input parameter file

Description: This file contains the penalty computed by Marxan for all features.
individual runs in a scenario. It indicates how expensive it was to satisfy the objectives

for a feature. It is a useful to the relative difficulty Marxan has meeting the objectives for

features.

Screen Log File
Name in input.dat: SAVELOG

Name of output file: scenario_penalty.dat, where ‘scenario’ is the name supplied by the
user in the input parameter file

Description: This file displays all of the screen output shown when running Marxan Z.

Annealing Detail
Name in input.dat: ANNEALINGTRACEROWS

Name of output file: scenario_penalty.dat, where ‘scenario’ is the name supplied by the

user in the input parameter file

Description: This file displays all of the screen output shown when running Marxan Z.

Iterative Improvement Detail
Name in input.dat: ITIMPTRACEROWS

Name of output file: scenario_penalty.dat, where ‘scenario’ is the name supplied by the

user in the input parameter file

Page 23 of 41

Description: This file displays all of the screen output shown when running Marxan Z.

Zone Connectivity Sum
Name in input.dat: SAVEZONECONNECTIVITYSUM

Name of output file: scenario_penalty.dat, where ‘scenario’ is the name supplied by the
user in the input parameter file

Description: This file displays all of the screen output shown when running Marxan Z.

Page 24 of 41

1.3 SCREEN OUTPUT

In the input parameter file, the level of information displayed on the Marxan Z screen can

be determined using the VERBOSITY variable in the program controls section. If a

verbosity level of zero is set, no information about the scenario will be displayed. A level

of three is the highest possible level and will display the most detailed information about
the scenario. Any level greater than zero, will display basic summary information for

each run. Level 2 will include additional information on the successful loading of files,

how many lines were successfully read, the score of the zone configuration at different

points in a run, and more time measures. When using adaptive annealing with this level

of information, the calculated initial temperature and decrement are also displayed. Level
3 is typically more detail than necessary. Level 3 provides information about the current

zone configuration score each time the temperature is decremented when using simulated

annealing.

An example of one basic summary information line (included in all levels greater than
zero) is:

Run 1 Value 10 Cost 12 PU 100 Zonename2 50 Zonename3 25 Zonename4 25 Boundary 300 Missing 2 Penaly 500

Run 1 indicates that this is the first run of the algorithm. The run number does not always
appear on the same line as the valuation of the solution. It depends upon the information

detail level.

Value 10 is the cost plus the boundary value plus the penalty for missing features.

Because the penalty is included in this value, the meaning of the value requires
interpretation.

Cost 12 is the cost for the solution. It is the sum of the costs of all planning units in the

solution in the units of the cost field in the pu.dat file.

PUs 100 is the total number of planning units in the solution.

Zonename x is the number of planning units in that zone. All protected zones will be

listed in the summary line as the name of the zone indicated in the zones.dat file. The

planning units in the protected zones will sum to equal the total number of planning units
in the solution.

Boundary 300 is the perimeter, or boundary length, of the solution.

Missing 2 is the number of objectives which are under-represented in the solution. These
objectives are the targets defined in feat.dat and zonetarget.dat. They are screened

according to the ‘MISSLEVEL’ parameter in the input.dat parameter file.

Page 25 of 41

Penalty 500 is the penalty for not representing all of the features. If they are all
represented, then it will be 0.0.

Page 26 of 41

2.0 Objective Function and Algorithms used

2.1 THE OBJECTIVE FUNCTION

The objective function gives a value for each zoning configuration of planning units.

This means that a single planning unit or no planning units at all can be given an

objective function value. A configuration containing zero planning units would be cheap
to implement, but would probably not meet the planning objectives and so the objective

function value should be very poor.

If we have an objective function which gives any possible zoning configuration a value,

or score, then we can compare any two zone configurations and say which one is better
than the other (according to the objective function). Because the objective function value

can be evaluated by a computer, the door is open to using a wide range of methods to
automatically create zone configurations that have good objective function values.

In Marxan Z, this objective function is used by the iterative improvement algorithm and
by simulated annealing. The objective function was designed with the aim to integrate it

with a simulated annealing optimiser but the two are distinct entities. Simulated

annealing is a general purpose optimiser and the objective function defines the constraints

and objectives for a zone configuration without explicitly defining how an optimal

zonation will be found.

The objective function consists of two main sections; the first is a measure of the ‘cost’ of
the zone configuration and the second a penalty for breaching various criteria. In its

simplest form, it is a combination of the economic cost of the zone configuration and a

penalty for not meeting all of the objectives, if any are unmet. These criteria can include

a cap on the ‘cost’ of the zone configuration and always includes the target representation

level for each feature. As well as this is the optional measure of the fragmentation of the
zone configuration and an optional cost threshold penalty. In this objective function, the

lower the value the better the zone configuration:

)(toldPenaltyCostThreshPenaltyFPFBoundaryBLMCost
ConValuePUsPUs

+×++ ∑∑∑

Cost is the sum of each cost measure multiplied by the value indicated in zonecost.dat file

of each of the PU within the zone configuration.

‘Boundary’ is the length (or possibly cost) of the boundary surrounding the zone
configuration. The constant BLM is the boundary length multiplier which determines the

importance given to the boundary length relative to the cost of the zone configuration. If

Page 27 of 41

a value of 0 is given to BLM then the boundary length is not included in the objective
function.

The next term is a penalty given for not adequately representing a feature, summed over

all features for each zone. FPF stands for ‘feature penalty factor’ and is a weighting

factor for the feature which determines the relative importance for satisfying that
particular feature’s target. The penalty term is a penalty associated with each

underrepresented feature. It is expressed in terms of cost and boundary length and is

roughly the cost and additional modified boundary needed to adequately capture a feature

which is not adequately represented in the current zone configuration.

The cost threshold penalty is a penalty applied to the objective function if the target cost

is exceeded. It is a function of the cost and possibly the boundary of the system and in
some algorithms will change as the algorithm proceeds (which is the t in the above

formula). This penalty is also optional and can be excluded from the objective function.

Cost of the Zone Configuration
The objective function that Marxan Z uses has the constraint that the cost of a zone
configuration is the linear combination of costs of all the planning units within the zone

configuration, broken down by zone.

Boundary Length and Fragmentation
By including a boundary length term in the objective function we can apply a control on
the level of fragmentation in the zone configuration. In order to allow the boundary

length to be added to the cost measure, a multiplicative factor is used. This is because the

boundary length is most probably going to be in units which are different from the cost
measure. Not only are the units incompatible without a boundary length modifier, but the

importance of compactness over cost is not immediately obvious. Changing the
boundary length modifier allows planners to explore this issue.

Representation Requirements for Features
In the objective function, if the feature does not meet one or more of its requirements then

it will attract a penalty depending upon how far below representation it is and the relative

value of the feature to the other features.

Feature Penalty
The feature penalty is the penalty given to a zone configuration for not achieving feature

targets. It is based on a principle that if a feature is below its target representation level,

then the penalty should be close to the cost for raising that feature up to its target

representation level. For example: if the requirement was to represent each feature by at

least one instance then the penalty for not having a given feature would be the cost of the
least expensive planning unit which holds an instance of that feature. If you were

missing a number of features, then you could produce a zone configuration that was fully
representative by adding the least expensive planning units containing each of the

Page 28 of 41

missing features. This would not increase the objective function value for the zone
configuration, in fact, if any of the additional planning units had more than one of the

missing features, then the objective function value would decrease. It would appear to be

ideal to recalculate the penalties after each change had been made to the zone

configuration. However, this would be time consuming and it turns out to be more

efficient to work with penalties which change only in the simplest manner from one point
in the algorithm to the next. A greedy algorithm is used to calculate the cheapest way in

which each feature could be represented on its own and this forms the base penalty for

that feature. Marxan Z adds together the cheapest planning units which would achieve

the representation target. This approach is described in the following pseudo-code:

I. For each planning unit calculate a ‘cost per area’ value.

A. Determine how much of the target for the given feature is contributed by this
planning unit.

B. Determine the economic cost of the planning unit

C. Determine the boundary length of the planning unit

D. The overall cost is economic cost + boundary length x BLM

E. Cost-per-hectare is then the value for feature divided by the overall cost.

II. Select the planning unit with the lowest cost-per-hectare. Add its cost to the running

cost total and the level of representation for the feature to the representation

level total.

A. If the level of representation is close to the target then it might be cheaper to pick
a ‘cheap’ planning unit has the required amount of the feature regardless of its cost-

per-area.

III. Continue adding up these totals until you have found a collection of planning units

which adequately represent the given feature.

IV. The penalty for the feature is the total cost (including boundary length times BLM) of

these planning units.

Thus, if one feature were completely unrepresented then the penalty would be the same as

the cost of adding the simple set of planning units, assuming that they are isolated from

each other for boundary length purposes. This value is quick to calculate but will tend to

be higher than optimum. Sometimes, there are more efficient ways of representing a
feature than that determined by a greedy algorithm, consider the following example.

Example 1: Feature A appears on a number of planning units, the best ones

are:

Planning Unit Cost Amount of A represented

1 2 3

2 4 5

3 5 5

Page 29 of 41

4 8 6

The target for A is 10 units. If we use the greedy algorithm we would represent this with
planning units 1, 2, and 3 (selected in that order) for a total cost of 11.0 units. If we

chose only planning units 2 and 3, we would still adequately represent A, but our cost

would be 9 units.

This example shows a simple case where the greedy algorithm does not produce the best

results. The greedy algorithm is rapid and produces reasonable results. The program will

tend to overestimate and never underestimate the penalties when using a greedy

algorithm. It is undesirable to have a penalty value which is too low because then the
objective function might not improve by fully representing all features. If there are some

features which need not be fully represented, this should be handled entirely by use of the
feature penalty factor, which is described below. It is not problematic to have penalties

which are higher then they absolutely need to be, sometimes it is desirable. The

boundary cost for a planning unit in the above pseudo-code is the sum of all of its
boundaries. This assumes that the planning unit has no common boundaries with the rest

of the zone configuration and hence will again tend to overestimate the cost of the
planning unit and the penalty.

The penalty is calculated and fixed in the initialization stage of the algorithm. It is

applied in a straight forward manner - if a feature has reached half of its target then it

scores half of its penalty. The problem with this is that you might find yourself in a
situation where you only need a small amount to meet a feature’s target, but that there is

no way of doing this which would decrease the objective value. If we take Example 1

once again, then the penalty for feature A is 11 units. If you already have planning units
1 and 4 in the zone configuration, then you have 9 units of the feature and the penalty is

11.0 x (10-9)/10 = 1.1 units. So the feature attracts a penalty of 1.1 units and needs only
1 more unit of abundance to meet its target. There is no planning unit with a cost that low

- the addition of any of the remaining planning units would cost the zone configuration

much more than the gain in penalty reduction.

This problem can be fixed by setting a higher FPF (Feature Penalty Factor) for all
features. The FPF is a multiplicative factor for each feature, described below.

It is possible that the target for a feature is set higher than can possibly be met. In
Australia where the JANIS (1997) requirements state that 15% of the pre-European area

of each forest ecosystem type should be protected, we can easily have targets which are

larger than the current area of a given forest ecosystem. Currently, when this is the case,

the algorithm will scale up the penalty so that if, for example, it costs 100 units to protect

all of a given ecosystem but that represents only half of the target, then the initial penalty
will be 200 units. This means that if you get half-way to your target then the penalty for

that feature will be half the maximum penalty, no matter how high the target or whether it
is a feasible target.

Page 30 of 41

Feature Penalty Factor
The feature penalty factor (FPF) is a multiplicative factor which can be unique to each

feature. It is primarily based on the relative worth of that feature but it includes a

measure of how important it is to get it fully represented. The actual effect that it will
have varies between the methods which use the objective function. If it is below 1 then

the algorithm might refuse to add a planning unit to protect that feature if there are no

other features on the planning unit. An algorithm might fall slightly short in the

representation of features, getting close to, but not at or above, the target value. To

ensure that each feature meets the target it can sometimes be desirable to set the FPF at
greater value than 1.

Cost Threshold Penalty
The cost threshold is an option which allows the user to cap the zone configuration to a

set cost + modified boundary length. This has been included to make it possible to look

at a reverse version of the problem. The reversal of the problem would be to find the

zone configuration which has the best representation for all features constrained by a
maximum cost. It works by applying a penalty if the given threshold value is exceeded.

The penalty is the amount by which the threshold is exceeded multiplied by the cost

threshold penalty. The penalty depends upon the stage of the annealing algorithm (how

far into the annealing process the system is given as a proportion). The multiplier is:

Cost Threshold Penalty = Amount over Threshold ×(Aebt − A).

Here t is the time during the run and varies between 0 and 1. A and B are control
parameters. B controls how steep the curve is (A high B will have the multiplier varying

little until late in the run). A controls the final value. A high A will penalize any excess of
the threshold greatly, a lower A might allow the threshold to be slightly exceeded. The

multiplier starts at 0 when t is zero. Both A and B require some experimentation to set.

The cost threshold penalty is built into the objective function and hence will apply to the
annealing module along with the iterative improvement module.

Page 31 of 41

2.2 ALGORITHMS METHODS

There are two basic algorithms that can be used to formulate a solution in Marxan Z:
simulated annealing and iterative improvement. Each of these algorithms can be used

alone or in combination with each other. The run mode selected in the input parameter

file determines which algorithm, or combination of algorithms, is used to formulate a
solution in Marxan Z.

Simulated Annealing
Simulated annealing is based on iterative improvement with stochastic acceptance of bad

moves to help avoid getting stuck prematurely in a local minimum. The implementation
used in Marxan Z will run for a set number of iterations. For each iteration, a planning

unit is chosen at random and may or may not be already in the zone configuration. The

change to the value of the zone configuration - which would occur if this planning unit

were added or removed from the system - is evaluated just as it was with iterative

improvement. This change is combined with a parameter called the temperature and then
compared to a uniform random number. The planning unit might then be added or

removed from the system depending on this comparison.

The temperature starts at a high value and decreases during the algorithm. When the

temperature is high, at the start of the procedure, then both good and bad changes are

accepted. As the temperature decreases the chance of accepting a bad change decreases

until, finally, only good changes are accepted. For simplicity, the algorithm should
terminate before it can only accept good changes and the iterative improvement should

follow it, because at this point the simulated annealing algorithm behaves like an

inefficient iterative improvement algorithm.

There are two types of simulated annealing in Marxan Z. One is fixed schedule
annealing in which the annealing schedule (including the initial temperature and rate of

temperature decrease) is fixed before the algorithm commences. The other is adaptive

schedule annealing in which the algorithm samples the problem and sets the initial
temperature and rate of temperature decrease based upon its sampling.

Adaptive Annealing Schedule

The adaptive annealing schedule commences by sampling the system a number of times

(number of iterations/100). It then sets the target final temperature as the minimum
positive (ie least bad) change which occurred during the sampling period. The maximum

is set according to the formula:

Tinit = Min Change + 0.1 x (Max change - Min change)

This is based upon the adaptive schedule in (Conolly 1990). Here, Tinit is the initial
temperature, the changes (min and max) are the minimum and maximum bad changes

which occurred. In our case a bad change is one which increases the value of the

objective function (ie a positive value).

Page 32 of 41

Fixed Annealing Schedule

With fixed schedule annealing the parameters which control the annealing schedule are

fixed for each implementation of the algorithm. This is done typically by some trials of

the algorithm with different parameters for a number of iterations which is shorter by an
order of magnitude to the number to be used in the final run. The parameters will often

benefit by being changed for longer runs but still based on the trials. The trials include

looking at final results and also tracking the progress of individual runs. The annealing

schedules which arise from the fixed schedule process are generally superior to the

adaptive annealing schedule. Adaptive annealing is advantageous as it does not require a
skilled user to use the algorithm and because it is quicker. It is faster in terms of the

processing time required as there is much less in the way of initial runs, it is considerably
faster in terms of the time which the user must apply in running the algorithm. For this

reason it is taken as a major algorithm to be examined here. Land-use designers and

managers will tend to use the standard options and automatic methods to a large extent so

that the ability of adaptive annealing to design zone configuration is very useful, although

obviously not definitively important. Adaptive annealing is also important for broad
investigations, tests and trials on the system which would precede the more careful and

detailed use of a fixed schedule annealing algorithm.

Setting a Fixed Annealing Schedule

When setting a fixed schedule the two parameters to change are the initial and final
temperature. The final temperature is set by choosing an appropriate value for the

cooling function. If the final temperature is too low then the algorithm will spend a lot of

time at a local minimum unable to improve the system and continuing to try. If the final
temperature is too high then much of the important annealing work will not be completed

and the zone configuration will largely be delivered by the iterative improvement
schedule which follows simulated annealing and finds a nearby local minimum ‘at

random’. If the initial temperature is too high then the system will spend too much time at

high temperatures around the high temperature equilibrium and less time where most of
the annealing work is to be done.

Thus the best way to get the general feel for what the parameters should be is to run the

algorithm and sample the value of the current system regularly to see when the

equilibrium at various temperatures seems to be achieved, what they are and when the
system no longer changes or improves. This makes it easy to set a provisional final

temperature and also gives estimates at what reasonable initial temperatures might be.

From here tests can be run looking at the final output from multiple runs and different

parameters at a much shorter number of iterations.

Once good values have been found they need to be scaled up for the longer number of

iterations. This is because the length of time spent at lower or critical temperatures is
important and will drive the search for good parameters. Extending the length of the

Page 33 of 41

algorithm will increase the time spent at these temperatures longer than is necessary.
Thus the method used is to keep the final temperature the same and increase the level of

the initial temperature so that it will spend a similar length of time at lower levels but

allow it to search the global space to a greater extent. For a short run it is often best to

have the system running at some critical temperature for as long as possible. For a longer

run it is advantageous to increase the range of temperatures used.

Iterative Improvement
Iterative improvement is a simple optimization method. It has largely been supplanted by

simulated annealing but can still be profitably used to aid the other algorithms. There are

three basic types of iterative improvement which can be used in Marxan Z. They differ in
the set of possible changes which are considered at each step. Each of them starts with a

‘seed’ solution. This can be any kind of zone configuration with some, all, or no
planning units allocated to zones. It is useful to use the final result from another

algorithm such as simulated annealing as the starting solution for iterative improvement.

In this case the iterative improvement algorithm is used solely to ensure that no simple

improvements are possible.

At each iteration, the algorithm will consider a random change to see if it will improve

the value of the objective function if that change were made. If the change does improve

the system then it is made, otherwise another, as yet untested, change is tested at random.

This continues until every possible change has been considered and none will improve

the system. The resulting zone configuration is a local minimum (or local optimum).

The three basic types of iterative improvement differ in the types of change that they will

consider. The simplest type is called ‘normal iterative improvement’ and the only
changes that are considered are adding or removing each planning unit from the zone

configuration. This is the same ‘move set’ as is considered by the greedy algorithm and
by simulated annealing.

The second type of iterative improvement is called ‘swap’ and it will randomly select
planning units, if the selected planning unit can improve the system by being added or

removed from it then this is done otherwise an exchange is considered. If the chosen

planning unit is already in a zone configuration then the changes considered are removing

that planning unit but adding another one somewhere else. If the chosen planning unit is

not in the zone configuration then the changes considered are adding this to the system
but removing one that is already in the system. Every possible ‘swap’ is considered in

random order, stopping when one is found which will improve the system. Because the

number of possible exchanges can be very large, this is a much slower option.

The third type is called ‘two step’, in this method as well as testing each planning unit (in
random order) to see if adding or removing it would improve the system, each possible

combination of two changes is considered. These changes include, adding or removing
the chosen planning unit in conjunction with adding or removing every other planning

Page 34 of 41

unit. The number of such moves is even greater than in the ‘swap’ method, so that this
method should be used with care.

There is a fourth option which is to run the normal method first, to get a good local

optimum and then run the ‘two step’ method afterward. Because the number of

improvements that the ‘two step’ finds should be much smaller after a normal iterative
improvement algorithm has passed over the ‘seed’ solution this should be much faster

than running the ‘two step’ method on its own.

The main strength of iterative improvement is that the random element allows it to

produce multiple solutions. On average the solutions might be poor, but if it can produce
solutions quickly enough, then it may produce some very good ones over a great many

runs. It is theoretically possible to reach the global minimum by running iterative
improvement starting from either an empty zone configuration or a situation where every

planning unit starts in a randomly selected zone.

The main use of iterative improvement will still be to follow a different algorithm for

some fine-scale polishing up. This is particularly true for the ‘swap’ and ‘two step’
methods. Even following another algorithm these might take long to run.

Page 35 of 41

3.0 ACKNOWLEDGEMENTS

The ongoing development and support of Marxan software would not be possible without

the financial support of generous donor organisations from around the world.

We would like to thank Ecotrust, who provided substantial funding for the development
of the software. In addition, the National Heritage Trust contributed substantial funds to

development of the software and the research program underpinning the software. We

also acknowledge ongoing funding from the Applied Environment Decision Analysis

centre.

Page 36 of 41

4.0 KEY REFERENCES

Peer reviewed literature and reports using Marxan are compiled at The University of

Queensland’s Ecology Centre. An updated list can be obtained from the Marxan website:
http://www.uq.edu.au/marxan/index.html?page=80365&p=1.1.6.3

Airame, S. 2005. Channel Islands National Marine Sanctuary: Advancing the Science and
Policy of Marine Protected Areas. Pages 91-124 in A. Scholz and D. Wright, editors.

Place Matters: Geospatial Tools for Marine Science, Conservation, and Management in

the Pacific Northwest. Oregon State University Press, Corvallis.

Ardon, J.A., J. Lash, D. Haggarty. 2002. Modelling a Network of Marine Protected Areas

for the Central Coast of BC, version 3.1. Living Oceans Society, Sointula, BC,

Canada.

Ball, I. R. (2000) Mathematical applications for conservation ecology: the dynamics of

tree hollows and the design of nature reserves. PhD Thesis, The University of

Adelaide.

Ball, I. R., and H. P. Possingham. 2000. MARXAN (V1.8.2): Marine Reserve Design
Using Spatially Explicit Annealing, a Manual.

Beck, M. W. and M. Odaya (2001) Ecoregional planning in marine environments:

Identifying priority sites for conservation in the northern Gulf of Mexico. Aquatic

Conservation 11: 235-242.

Chan, A., A. Cundiff, N. Gardner, Y. Hrovat, L. Kircher, C. Klein. 2006. Marine

Protected Areas Along California’s Central Coast: A Multicriteria Analysis of

Network Design. Thesis. University of California, Santa Barbara.

Cook, R. R. and P. J. Auster (2005) Use of simulated annealing for identifying essential

fish habitat in a multispecies context. Conservaton Biology 19:3 876-886

Cook, R. R. (2006) Developing Alternatives for Optimal Representation of Seafloor

Habitats and Associated Communities in Stellwagen Bank National Marine
Sanctuary

Connolly, D. J. (1990) “an improved annealing scheme for QAP”, European Journal of

Operations Research, 46, 93-100.

Ferdaña, Z. (2005) Nearshore marine conservation planning in the PacificNorthwest:

Exploring the use of a siting algorithm for representing marine biodiversity, in
Wright, D.J. and Scholz, A.J. (eds.), "Place Matters: Geospatial Tools, for Marine

Page 37 of 41

Science, Conservation, and Management in the Pacific Northwest," Corvallis,
OR: OSU Press

Game, E. T. and H. S. Grantham. (2008). Marxan User Manual: For Marxan version
1.8.10. University of Queensland, St. Lucia, Queensland, Australia, and Pacific

Marine Analysis and Research Association, Vancouver, British Columbia,

Canada.

Geselbracht, L., R. Torres, G.S. Cumming, D. Dorfman, M. Beck. 2005.

Marine/Estuarine Site Assessment for Florida: A Framework for Site
Prioritization. The Nature Conservancy. Accessed on May 9, 2006 at

http://myfwc.com/wildlifelegacy/PDF/MarineSitePrioritizationFrameworkfinalrpt

Part1.pdf.

JANIS (1997) Nationally agreed criteria for the establishment of a comprehensive,
adequate and representative reserve system for forests in Australia. A report by the

Joint ANZECC/MCFFA National Forest Policy Statement Implementation

Subcommittee. National forest conservation reserves: Commonwealth proposed
criteria. Commonwealth of Australia, Canberra.

Kirkpatrick, S., Gelatt jr, C. D., and Vecchi, M. P. (1983) Optimization by Simulated

Annealing. Science, 220, 671-680.

Leslie, H.; M. Ruckelshaus, I. Ball, S. Andelman, H. Possingham. 2003. Using Siting

Algorithms in the Design of Marine Reserve Networks. Ecological Applications

13(1) S185-S198.

Lewis, A., S. Slegers, D. Lowe, L. Muller, L. Fernandes, J. Day. 2003. Use of Spatial
Analysis and GIS techniques to re-zone the Great Barrier Reef Marine Park.

Coastal GIS Workshop.

McDonnell, M. D., H. P. Possingham, I. R. Ball and E. A. Cousins (2002) Mathematical

methods for spatially cohesive reserve design. Environmental Modeling and

Assessment 7: 107-114.

Possingham, H., Ball, I. R., Andelman, S. (2000) “Mathematical methods for

identifyingrepresentative reserve networks” in Quantitative methods for

conservation biology. Ferson, S., and Burgman, M. (eds). Springer-Verlag, New

York.

Possingham, H. P., J. R. Day, M. Goldfinch and F. Salzborn (1993) The mathematics of

designing a network of protected areas for conservation. In: D. J. Sutton, C. E. M.

Pearce and E. A. Cousins (eds) Decision Sciences: Tools for Today. Proceedings of
12th National ASOR Conference. ASOR, Adelaide, pp. 536-545.

Page 38 of 41

Pressey, R. L., Humphries, C. J., Margules, C. R., Vane-Wright, R. I., and Williams, P.

H., (1993) “Beyond opportunism: Key principles for systematic reserve selection”,

TREE, 8, 124-128

Pressey, R. L., Johnson, I. R., and Wilson, P. D., (1994) “Shades of irreplaceability:
towards a measure of the contribution of sites to a reservation goal.”

Pressey, R.L., and V.S. Logan. 1998. Size of selection units for future reserves and its

influence on actual versus targeted representation of features: a case study in

western New South Wales. Biological Conservation 85: 305-319.

Pressey, R. L., Possingham, H. P., Margules, C. R., (1996) “Optimality in Reserve
Selection Algorithms: When Does it Matter and How Much?” Biological

Conservation 76, 259-267.

Richardson, E.A., M.J. Kaiser, G. Edwards-Jones, and H.P. Possingham. Sensitivity of

marine-reserve design to the spatial resolution of socioeconomic data. Conservation

Biology, in press. Royal Commission on Environmental Pollution. 2004. Turning

the tide: Addressing the impact of fisheries on the marine environment. Page 497.

RCEP, London.

Sala, E., O. Aburto-Oropeza, G. Paredes, I. Parra, J.C. Barrera, P.K. Dayton. 2002. A

General Model for Designing Networks of Marine Reserves. Science 298: 1991-
1993.

Stewart, R. R., T. Noyce and H. P. Possingham (2003) The opportunity cost of ad-hoc
marine reserve design decisions - An example from South Australia. Marine

Ecology Progress Series 253: 25-38.

Stewart, R. R. and H. P. Possingham (2003). A framework for systematic marine reserve

design in South Australia: A case study. Proceedings of the Inaugural World
Congress on Aquatic Protected Areas, Cairns - August 2002.

Stewart, R. R., and H. P. Possingham. 2005. Efficiency, costs and trade-offs in marine

reserve system design. Environmental Modeling & Assessment 10:203-213.

Stewart, R.R. M. Watts, T.J. Ward and H.P. Possingham (in prep). Identifying the
optimal trade-off effects when designing a Multiple-Use Marine Park with multiple

objectives

Stewart, R.R., L. Kircher, M. Watts, T.J. Ward and H.P. Possingham (in prep). A

systematic planning framework to manage the multiple uses of coastal and marine

resources and minimize potential for conflict

Page 39 of 41

Stoms, D.M. 1994. Scale dependence of species richness maps. Professional Geographer

46: 346-358.

Warman, L.D., A.R.E. Sinclair, G.G.E. Scudder, B. Klinkenberg, R.L. Pressey.

Sensitivity of Systematic Reserve Selection to Decisions about Scale, Biological

Data, and Targets: Case Study from Southern British Columbia. Conservation

Biology 18: 655-666.

Watts, M. E., I. R. Ball, H. P. Possingham et al (2008). Marxan with zones - optimised

landscape and seascape zoning using spatially explicit annealing, in prep.

Page 40 of 41

Appendix A. Example Input Parameter File

General Parameters

BLM 0
PROP 0.5

RANDSEED -1

NUMREPS 100

Annealing Parameters
NUMITNS 1000000

STARTTEMP -1

COOLFAC 0

NUMTEMP 10000

Input Files

INPUTDIR input
FEATNAME feat.dat

PUNAME pu.dat

PUVFEATNAME puvfeat.dat

BOUNDNAME bound.dat

ZONESNAME zones.dat
COSTSNAME costs.dat

ZONETARGETNAME zonetarget.dat

ZONECONTRIBNAME zonecontrib.dat
ZONECOSTNAME zonecost.dat

Save Files

SCENNAME california

SAVERUN 2
SAVEBEST 2

SAVESUM 2
SAVESCEN 2

SAVETARGMET 2

SAVESUMSOLN 2
SAVELOG 1

OUTPUTDIR output

Program control.

RUNMODE 1
MISSLEVEL 1

ITIMPTYPE 0

VERBOSITY 2

