Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Climate Science Documents / Competitive and demographic leverage points of community shifts under climate warming

Competitive and demographic leverage points of community shifts under climate warming

Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species’ responses are likely to drive shifts in the composition of a space- limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the impor- tance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identify- ing processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understand- ing of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns.

Credits: Proc R Soc B 280: 20130572.

Fair Use OK

DOWNLOAD FILE — PDF document, 532 kB (545,134 bytes)